C++进阶之虚函数表
C++通过继承(inheritance)和虚函数(virtual function)来实现多态性。所谓多态,简单地说就是,将基类的指针或引用绑定到子类的实例,然后通过基类的指针或引用调用实际子类的成员函数(虚函数)。本文将介绍单继承、多重继承下虚函数的实现机制。
一、虚函数表
为了支持虚函数机制,编译器为每一个拥有虚函数的类的实例创建了一个虚函数表(virtual table),这个表中有许多的槽(slot),每个槽中存放的是虚函数的地址。虚函数表解决了继承、覆盖、添加虚函数的问题,保证其真实反应实际的函数。
为了能够找到 virtual table,编译器在每个拥有虚函数的类的实例中插入了一个成员指针 vptr,指向虚函数表。下面是一个例子:
- class Base
- {
- public:
- virtual void x() { cout << "Base::x()" << endl; }
- virtual void y() { cout << "Base::y()" << endl; }
- virtual void z() { cout << "Base::z()" << endl; }
- };
- typedef void(*pFun)(void);
- int main()
- {
- Base b;
- int* vptr = (int*)&b; // 虚函数表地址
- pFun func1 = (pFun)*((int*)*vptr); // 第一个函数
- pFun func2 = (pFun)*((int*)*vptr+1); // 第二个函数
- pFun func3 = (pFun)*((int*)*vptr+2); // 第三个函数
- func1(); // 输出Base::x()
- func2(); // 输出Base::y()
- func3(); // 输出Base::z()
- return 0;
- }
上面定义了一个Base类,其中有三个虚函数。我们将Base类对象取址 &b 并强制转换为 int*,取得虚函数表的地址。然后对虚函数表的地址取值 *vptr 并强转为 int*,即取得第一个虚函数的地址了。将第一个虚函数的地址加1,取得第二个虚函数的地址,再加1即取得第三个虚函数的地址。
注意,之所以可以通过对象实例的地址得到虚函数表,是因为 vptr 指针位于对象实例的最前面(这是由编译器决定的,主要是为了保证取到虚函数表有最高的性能——如果有多层继承或是多重继承的情况下)。如图所示:
在VS2012中加断点进行Debug可以查看到虚函数表:
二、单继承时的虚函数表
1、无虚函数覆盖
假如现有单继承关系如下:
- class Base
- {
- public:
- virtual void x() { cout << "Base::x()" << endl; }
- virtual void y() { cout << "Base::y()" << endl; }
- virtual void z() { cout << "Base::z()" << endl; }
- };
- class Derive : public Base
- {
- public:
- virtual void x1() { cout << "Derive::x1()" << endl; }
- virtual void y1() { cout << "Derive::y1()" << endl; }
- virtual void z1() { cout << "Derive::z1()" << endl; }
- };
在这个单继承的关系中,子类没有重写父类的任何方法,而是加入了三个新的虚函数。Derive类实例的虚函数表布局如图示:
Derive class 继承了 Base class 中的三个虚函数,准确的说,是该函数实体的地址被拷贝到 Derive 实例的虚函数表对应的 slot 之中。
新增的 虚函数 置于虚函数表的后面,并按声明顺序存放。
2、有虚函数覆盖
如果在继承关系中,子类重写了父类的虚函数:
- class Base
- {
- public:
- virtual void x() { cout << "Base::x()" << endl; }
- virtual void y() { cout << "Base::y()" << endl; }
- virtual void z() { cout << "Base::z()" << endl; }
- };
- class Derive : public Base
- {
- public:
- virtual void x() { cout << "Derive::x()" << endl; } // 重写
- virtual void y1() { cout << "Derive::y1()" << endl; }
- virtual void z1() { cout << "Derive::z1()" << endl; }
- };
则Derive类实例的虚函数表布局为:
相比于无覆盖的情况,只是把 Derive::x()
覆盖了Base::x()
,即第一个槽的函数地址发生了变化,其他的没有变化。
这时,如果通过绑定了子类对象的基类指针调用函数 x(),会执行 Derive 版本的 x(),这就是多态。
三、多重继承时的虚函数表
1、无虚函数覆盖
现有如下的多重继承关系,子类没有覆盖父类的虚函数:
- class Base1
- {
- public:
- virtual void x() { cout << "Base1::x()" << endl; }
- virtual void y() { cout << "Base1::y()" << endl; }
- virtual void z() { cout << "Base1::z()" << endl; }
- };
- class Base2
- {
- public:
- virtual void x() { cout << "Base2::x()" << endl; }
- virtual void y() { cout << "Base2::y()" << endl; }
- virtual void z() { cout << "Base2::z()" << endl; }
- };
- class Derive : public Base1, public Base2
- {
- public:
- virtual void x1() { cout << "Derive::x1()" << endl; }
- virtual void y1() { cout << "Derive::y1()" << endl; }
- };
对于 Derive 实例 d 的虚函数表布局,如下图:
可以看出:
- 每个基类子对象对应一个虚函数表。
- 派生类中新增的虚函数放到第一个虚函数表的后面。
测试代码(VS2012):
- typedef void(*pFun)(void);
- int main()
- {
- Derive b;
- int** vptr = (int**)&b; // 虚函数表地址
- // virtual table 1
- pFun table1_func1 = (pFun)*((int*)*vptr+0); // vptr[0][0]
- pFun table1_func2 = (pFun)*((int*)*vptr+1); // vptr[0][1]
- pFun table1_func3 = (pFun)*((int*)*vptr+2); // vptr[0][2]
- pFun table1_func4 = (pFun)*((int*)*vptr+3); // vptr[0][3]
- pFun table1_func5 = (pFun)*((int*)*vptr+4); // vptr[0][4]
- // virtual table 2
- pFun table2_func1 = (pFun)*((int*)*(vptr+1)+0); // vptr[1][0]
- pFun table2_func2 = (pFun)*((int*)*(vptr+1)+1); // vptr[1][1]
- pFun table2_func3 = (pFun)*((int*)*(vptr+1)+2); // vptr[1][2]
- // call
- table1_func1();
- table1_func2();
- table1_func3();
- table1_func4();
- table1_func5();
- table2_func1();
- table2_func2();
- table2_func3();
- return 0;
- }
不同编译器对 virtual table 的实现不同,经测试,在 g++ 中需要这样:
- // virtual table 1
- pFun table1_func1 = (pFun)*((int*)*vptr+0); // vptr[0][0]
- pFun table1_func2 = (pFun)*((int*)*vptr+2); // vptr[0][2]
- pFun table1_func3 = (pFun)*((int*)*vptr+4); // vptr[0][4]
- pFun table1_func4 = (pFun)*((int*)*vptr+6); // vptr[0][6]
- pFun table1_func5 = (pFun)*((int*)*vptr+8); // vptr[0][8]
- // virtual table 2
- pFun table2_func1 = (pFun)*((int*)*(vptr+1)+0); // vptr[1][0]
- pFun table2_func2 = (pFun)*((int*)*(vptr+1)+2); // vptr[1][2]
- pFun table2_func3 = (pFun)*((int*)*(vptr+1)+4); // vptr[1][4]
2、有虚函数覆盖
将上面的多重继承关系稍作修改,让子类重写基类的 x() 函数:
- class Base1
- {
- public:
- virtual void x() { cout << "Base1::x()" << endl; }
- virtual void y() { cout << "Base1::y()" << endl; }
- virtual void z() { cout << "Base1::z()" << endl; }
- };
- class Base2
- {
- public:
- virtual void x() { cout << "Base2::x()" << endl; }
- virtual void y() { cout << "Base2::y()" << endl; }
- virtual void z() { cout << "Base2::z()" << endl; }
- };
- class Derive : public Base1, public Base2
- {
- public:
- virtual void x() { cout << "Derive::x()" << endl; } // 重写
- virtual void y1() { cout << "Derive::y1()" << endl; }
- };
这时 Derive 实例的虚函数表布局会变成下面这个样子:
相比于无覆盖的情况,只是将Derive::x()
覆盖了Base1::x()
和Base2::x()
而已,你可以自己写测试代码测试一下,这里就不再赘述了。
注:若虚函数是 private 或 protected 的,我们照样可以通过访问虚函数表来访问这些虚函数,即上面的测试代码一样能运行。
附:编译器对指针的调整
在多重继承下,我们可以将子类实例绑定到任一父类的指针(或引用)上。以上述有覆盖的多重继承关系为例:
- Derive b;
- Base1* ptr1 = &b; // 指向 b 的初始地址
- Base2* ptr2 = &b; // 指向 b 的第二个子对象
- 因为 Base1 是第一个基类,所以 ptr1 指向的是 Derive 对象的起始地址,不需要调整指针(偏移)。
- 因为 Base2 是第二个基类,所以必须对指针进行调整,即加上一个 offset,让 ptr2 指向 Base2 子对象。
- 当然,上述过程是由编译器完成的。
当然,你可以在VS2012里通过Debug看出 ptr1 和 ptr2 是不同的,我们可以这样子:
- Base1* b1 = (Base1*)ptr2;
- b1->y(); // 输出 Base2::y()
- Base2* b2 = (Base2*)ptr1;
- b2->y(); // 输出 Base1::y()
其实,通过某个类型的指针访问某个成员时,编译器只是根据类型的定义查找这个成员所在偏移量,用这个偏移量获取成员。由于 ptr2 本来就指向 Base2 子对象的起始地址,所以b1->y()
调用到的是Base2::y()
,而 ptr1 本来就指向 Base1 子对象的起始地址(即
Derive对象的起始地址),所以b2->y()
调用到的是Base1::y()
。
个人站点:http://songlee24.github.com
参考:1、《Inside The C++ Object Model》
2、http://blog.csdn.net/haoel/article/details/1948051
C++进阶之虚函数表的更多相关文章
- C++ 虚函数表解析
转载:陈皓 http://blog.csdn.net/haoel 前言 C++中 的虚函数的作用主要是实现了多态的机制.关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实 ...
- C++ 多态、虚函数机制以及虚函数表
1.非virtual函数,调用规则取决于对象的显式类型.例如 A* a = new B(); a->display(); 调用的就是A类中定义的display().和对象本体是B无关系. 2. ...
- C++迟后联编和虚函数表
先看一个题目: class Base { public: virtual void Show(int x) { cout << "In Base class, int x = & ...
- C++ 知道虚函数表的存在
今天翻看陈皓大大的博客,直接找关于C++的东东,看到了虚函数表的内容,找一些能看得懂的地方记下笔记. 0 引子 类中存在虚函数,就会存在虚函数表,在vs2015的实现中,它存在于类的头部. 假设有如下 ...
- C++虚函数和虚函数表
前导 在上面的博文中描述了基类中存在虚函数时,基类和派生类中虚函数表的结构. 在派生类也定义了虚函数时,函数表又是怎样的结构呢? 先看下面的示例代码: #include <iostream> ...
- C++ Daily 《5》----虚函数表的共享问题
问题: 包含一个以上虚函数的 class B, 它所定义的 对象是否共用一个虚函数表? 分析: 由于含有虚函数,因此对象内存包含了一个指向虚函数表的指针,但是这个指针指向的是同一个虚函数表吗? 实验如 ...
- C++虚函数表
大家知道虚函数是通过一张虚函数表来实现的.在这个表中,主要是一个类的虚函数的地址表,这张表解决了继承.覆盖的问题,其内容真是反应实际的函数.这样,在有虚函数的类的实例中,这个表分配在了这个实例的内存中 ...
- 对C++虚函数、虚函数表的简单理解
一.虚函数的作用 以一个通用的图形类来了解虚函数的定义,代码如下: #include "stdafx.h" #include <iostream> using name ...
- 深入理解C++虚函数表
虚函数表是C++类中存放虚函数的一张表,理解虚函数表对于理解多态很重要. 本次使用的编译器是VS2013,为了简化操作,不用去操作函数指针,我使用到了VS的CL编译选项来查看类的内存布局. CL使用方 ...
随机推荐
- Laravel 的 API 认证系统 Passport 三部曲(二、passport的具体使用)
GQ1994 关注 2018.04.20 09:31 字数 1152 阅读 1316评论 0喜欢 1 参考链接 Laravel 的 API 认证系统 Passport 三部曲(一.passport安装 ...
- MySQL ORDER BY IF() 条件排序
源 在做sqlzoo的时候,碰到一个SQL的排序问题,他把符合条件的单独几行,可以放在查询结果的开始,或者查询结果的尾部 通过的方法就是IN语句(也可以通过IF语句) 自己做了个测试,如下,这个是表的 ...
- CREATE TABLE AS - 从一条查询的结果中创建一个新表
SYNOPSIS CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } ] TABLE table_name [ (column_name [, ...] ...
- delphi 7 生成 调用 bat文件的exe文件
unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...
- java线程池 多线程 搜索包含关键字的文件路径
package org.jimmy.searchfile20180807.main; public class ThreadMain implements Runnable{ private int ...
- Linux运维到底是做什么的?在开始学习之前,你必须了解这些!
首先祝贺你选择学习Linux,你可能即将踏上Linux的工作之旅,出发之前,让我带你来看一看关于Linux和Linux运维的一切. Linux因其高效率.易于裁剪.应用广等优势,成为了当今中高端服务器 ...
- android中ListView的定位:使用setSelectionFromTop
如果一个ListView太长,有时我们希望ListView在从其他界面返回的时候能够恢复上次查看的位置,这就涉及到ListView的定位问题: 解决的办法如下: 1 2 3 4 5 6 7 // 保存 ...
- Sql语句的一些事(二)
与sql语句的书写顺序并不是一样的,而是按照下面的顺序来执行 from--where--group by--having--select--order by, from:需要从哪个数据表检索数据 wh ...
- Python 面向对象 组合-多态与多态性-封装-property
面向对象-组合 1.什么是组合 组合指的是某一个对象拥有一个属性,该属性的值是另外一个类的对象 class Foo: xxx = 111 class Bar: yyy = 222 obj = Foo( ...
- String 工具类
package com.mytripod.util; import sun.rmi.runtime.Log; import java.io.UnsupportedEncodingException; ...