转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud
 
 
Going from u to v or from v to u?
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 14778   Accepted: 3911

Description

In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, and one-way corridors connecting some rooms. Each time, Wind choose two rooms x and y, and ask one of their little sons go from one to the other. The son can either go from x to y, or from y to x. Wind promised that her tasks are all possible, but she actually doesn't know how to decide if a task is possible. To make her life easier, Jiajia decided to choose a cave in which every pair of rooms is a possible task. Given a cave, can you tell Jiajia whether Wind can randomly choose two rooms without worrying about anything?

Input

The first line contains a single integer T, the number of test cases. And followed T cases.

The first line for each case contains two integers n, m(0 < n
< 1001,m < 6000), the number of rooms and corridors in the cave.
The next m lines each contains two integers u and v, indicating that
there is a corridor connecting room u and room v directly.

Output

The output should contain T lines. Write 'Yes' if the cave has the property stated above, or 'No' otherwise.

Sample Input

1
3 3
1 2
2 3
3 1

Sample Output

Yes

题意:给一个图,问是否为单向连通。

Kosaraju+缩点,然后拓扑序搞一下,若只有一条没有分支的链,则Yes,否则No

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn=;
vector<int>G[maxn];
vector<int>rG[maxn];
vector<int>vs;
int vis[maxn];
int cmp[maxn];
int last[maxn];
int deg[maxn];
int next[maxn];
int V;
vector<int>vc[maxn];
void add_edge(int u,int v)
{
G[u].push_back(v);
rG[v].push_back(u);
}
void init(int n)
{
for(int i=;i<n;i++)
{
G[i].clear();
rG[i].clear();
vc[i].clear();
vis[i]=;
last[i]=-;
deg[i]=;
next[i]=-;
}
}
void dfs(int v)
{
vis[v]=;
for(int i=;i<G[v].size();i++)
{
if(!vis[G[v][i]])dfs(G[v][i]);
}
vs.push_back(v);
}
void rdfs(int v,int k)
{
vis[v]=;
cmp[v]=k;
vc[k].push_back(v);
for(int i=;i<rG[v].size();i++)
{
if(!vis[rG[v][i]])rdfs(rG[v][i],k);
}
}
int scc()
{
memset(vis,,sizeof(vis));
vs.clear();
for(int i=;i<V;i++)
{
if(!vis[i])dfs(i);
}
memset(vis,,sizeof(vis));
int k=;
for(int i=vs.size()-;i>=;i--)
{
if(!vis[vs[i]])rdfs(vs[i],k++);
}
return k;
}
int main()
{
ios::sync_with_stdio(false);
int t;
cin>>t;
while(t--)
{
int n,m;
cin>>n>>m;
V=n;
init(n);
int u,v;
for(int i=;i<m;i++)
{
cin>>u>>v;
add_edge(--u,--v);
}
int k=scc();
memset(vis,,sizeof(vis));
int flag=;
int num=;
for(int i=;i<k;i++)
{
for(int j=;j<vc[i].size();j++)
{
u=vc[i][j];
for(int l=;l<G[u].size();l++)
{
v=G[u][l];
if(cmp[u]!=cmp[v])
{
if(last[cmp[v]]==-)
{
last[cmp[v]]=cmp[u];
}
else if(last[cmp[v]]==cmp[u])continue;
else flag=;
if(next[cmp[u]]==-)
{
next[cmp[u]]=cmp[v];
}
else if(next[cmp[u]]==cmp[v])
{
continue;
}
else flag=;
}
}
}
}
for(int i=;i<k;i++)
{
if(last[i]==-)num++;
}
if(flag&&num==)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
} return ;
}

代码君

[poj2762] Going from u to v or from v to u?(Kosaraju缩点+拓排)的更多相关文章

  1. POJ2762 Going from u to v or from v to u? 强连通+缩点

    题目链接: poj2762 题意: 给出一幅单向图.问这张图是否满足   随意两点ab 都能 从a到达b 或  从b到达a 题解思路: 推断一幅图是否满足弱连通 首先想到的是将图中的 强连通分量(能互 ...

  2. POJ2762 Going from u to v or from v to u(单连通 缩点)

    判断图是否单连通,先用强连通分图处理,再拓扑排序,需注意: 符合要求的不一定是链拓扑排序列结果唯一,即在队列中的元素始终只有一个 #include<cstdio> #include< ...

  3. POJ2762 Going from u to v or from v to u?(判定单连通图:强连通分量+缩点+拓扑排序)

    这道题要判断一张有向图是否是单连通图,即图中是否任意两点u和v都存在u到v或v到u的路径. 方法是,找出图中所有强连通分量,强连通分量上的点肯定也是满足单连通性的,然后对强连通分量进行缩点,缩点后就变 ...

  4. poj2762 Going from u to v or from v to u?

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13040 ...

  5. 【缩点+拓扑判链】POJ2762 Going from u to v or from v to u?

    Description In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has ...

  6. Oracle基本数据字典:v$database、v$instance、v$version、dba_objects

    v$database: 视图结构: SQL> desc v$database; Name                                      Null?    Type - ...

  7. Going from u to v or from v to u?_POJ2762强连通+并查集缩点+拓扑排序

         Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K       Description I ...

  8. 临时文件相关的v$tempfile v$sort_usage与V$tempseg_usage

    SQL> select username,user,segtype,segfile#,segblk#,extents,segrfno# from v$sort_usage; SEGFILE#代表 ...

  9. [强连通分量] POJ 2762 Going from u to v or from v to u?

    Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17089 ...

随机推荐

  1. mysql grant all privileges on

    遇到了 SQLException: access denied for @'localhost' (using password: no) 解决办法 grant all privileges on * ...

  2. “Win”组合键

    Windows组合键功能: 单独按下显示或隐藏 [开始] 功能表. +Break 显示 [系统内容] 对话方块. +D 显示桌面. +M 最小化所有的视窗. +Shift+M 还原最小化的视窗. +E ...

  3. PHP获取文件后缀名的三种方法

    如下: <? PHP获取文件后缀名的几种方法1: function get_file_type($filename){ $type = substr($filename, strrpos($fi ...

  4. CSS优先级、引入方式、Hack

    优先级 important > 内联(1,0,0,0) > id(1,0,0) > class(1,0) > element(1) > *通配符 css引入方式 方式一: ...

  5. 基于cygwin构建u-boot(四)libgcc引用

    接上文,config.mk文件修改后,即使没有.depend也可以正常处理了: 六.错误:gcclib引用错误 完成之前几篇的工作后,程序就可以一直执行了,直到最后生成u-boot, 出现如下错误告警 ...

  6. 分布式批处理平台(wolf)简介

    "wolf"即狼,狼的适应性很强.可栖息范围包括苔原.草原.森林.荒漠.农田等多种生境:具有敏锐的观察力.专一的目标.默契的配合,它们总能依靠团体的力量达成目标. 分布式批处理平台 ...

  7. XML Schema <第三篇>

    验证XML文档是否符合议定的XML结构有两种方法,分别是DTD模式与XML Schema.本文主要介绍XML Schema. 一.XML Schema的优点 XML Schema基于XML,没有专门的 ...

  8. Unix,windows和Mac中的换行

    Unix 系统里,每行结尾只有“<换行>”,即“\n”:Windows系统里面,每行结尾是“<换行><回车 >”,即“\r\n”:Mac系统里,每行结尾是“< ...

  9. 关于Redis

    在同步dump.rdb文件时要执行service redis stop后,再拷贝目标rdb文件过去,然后再start 而不是拷贝目标rdb文件过去后直接执行restart  因为redis在执行sto ...

  10. 【转】使用vnc连接linux服务器方便hadoop开发调试

    VNC(Virtual Network Computing)它能将完整的窗口界面通过网络,传输到另一台计算机的屏幕上. 类似的软件在Windows服务器中包含的"Terminal Serve ...