题目

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAiQAAAArCAYAAABIOpOMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAuASURBVHhe7Z2NbuTIDYRv8+KHe/IkBWwhlQLJZkttS+PlBxDq5j975jTCrO379e//8tcwDMMwDMOD/Ov3dRiGYRiG4THmgWQYhmEYhseZB5JhGIZhGB7n1Q8kv379+r36H5FOqeyr2FPs1Ml8d+f8rtmuEPXW6ffOTFnsyXNCrl2pWNmVHV9nN5a9d8WJdF2y2Con+6ikYmWPiGKu5LnCbp2rfWVxq3yRnbpuL10/52rcd1CdS4fd2eCfSZcdX6cT+3HfkOBncKvBVva3EfWL/e7PGq/mhi2SzKZE9kz+JHDmKq7zPXUdds7SXwOVDlEcRPE5MnkLUW+UNxCdNySz/VTwevh83Xm/81yiHndFwX71Xozi7qL/HVBOk/WMWqt5jv6WTeeQu9zJlcWe7C+DNTq14LMiyxHlX9VUe7YGqzyg4wMyP+gd94t8nCgGOo2lj9o87gSed7fOTrzaOmvF9ZFfJ09ElmtFVl9jvZ+oFrhSj1SxVUy3D/fTWK49X5YfZDEV8F0R1dc42jv1I9sJf9dh3yWrHVH1uqLbN/c6g/vssqpLMr1Dv47/1VrtBxIkIllIp9EOmodrrR/RqXuqvwzPv6q38s/iVY91hsd6XLQGvo/o+jiIiWI7PXRrrmp08nRBri6suRNDslifp1pHeDyJ8mQ5SJRrlTtDa2bxWZ5V/ioOZPUiGKPAN4pZ6biOdBFuq3xJ5LOKo72KdRv2EfTROOI2patzOj4Vp+Oxz4Bf5B/Vv9LXnVzdvgjtuK7QPK1/smFySlSkU3gH5NOcrK1rlafhGSnYnz4XR8/AJcLP9avxfqJzcjo+uzCnXk+BfOyXa98r6qOysgHdq34F4zR2Jx5ojkicJ19H6DOJgJ5zqA/1FYyjXycGPqyj6y5RDeyrPFHMHZhPrwR7iu7hQz/Gqd9dtIeIlX0XzuOSofOq7MD8XpNyGuT0HrGvatGf87moTTnyMyRRw3fwpjP8QLCn+L7S3QV5tE/NC31Vh33Qx/dOplcqHz3bJ1jVRu/04TlQXOeoD68Ur4s9/Z6gW/t0j1k+6FXughxPvY7QrcRRHdZaz/OviPI78KGfrpVoXuB67Q/6qF+NwVrFdYraeaV4b1ltBT6M034crUN7pHOqHqBnzQ5df/ioXIFxuHK+aA7qtJ7KafwMtCfoox7vcOlnSLTJbH2XKNcdHaj0uyAP47o9AdW7X3evevcBkQ5kce6fxStXfHZrdnyeBj112Z2vmldtnTWBjqz8spwR3Vwg8jlB1ltF1Cuo5lGq2SobifyzHFiDKgfJfIH7R/EniXrRmp36V3u8M9vVvlSX2Z1Oj8wV5SRXbJEeOhDpK1+ugfppXJSDbH9DUiU7RVSDg+KqcgLU2hWN67Djm3E3Hpw8tw7Za4VZTveh+bjWq8sJ+LpSIh2lgv3otRsDsNZYtRHomBPXyKcD56GcRvviWq8uhL14b7p3AZrL9byqOJkNeSJ/oP5RLNEc2tuKHd8K7Uv75dXFoS7rBfZTfUaysj0FXx+f3fviHlf15Qwup4h6y1DfLA66Tn9bDyRIqMV8fxIeMIfQQf36yficvl+BM+j6Aj1HZbduF9aLan4n2sepXvTM9OwiPUVhH9BzjavuHc2jPlhHUqF25tX8b6QzXzSH6twW5YNd9bSpD3GfDuq/G/sW2HfUP894dy59XTrQ33vxuiv7d8PzqeaFjX16vzqHyptBfzpTRPuBJErEAhTA6x2QV6ViZX8z0ZyRbofodVrhNXfjrxLVid5P2V71CnTIHdkA7RFZzgieFaWjc6JesM96yPKsqGYGzHs1v8Nz5BzVXvUKdOglsgHanWyOTK+wF/fJaq1Y1bqS8wqcC7Laq55gj15dT2gnWFezMVflcwfNzVq7dOPgo9IBuSkO80S2T4YzVWe09Vs2RBPyUGlXPwL/qoku3seKEzV/IjyXN56Pvp9cMrui75HI9lVEubWXiMoO/cl+qz52QV8qEaiXSWZXkJe6yFYR9YYc3OMa5aRefUHk/2lwrkgyO9H5VQ/0nHbwuKt5IqLXC/uTNRTkdlmBXihOJ4fGq2TA1unrq9D6uGa9bn1DQomgPrNfoaqnRD7QPfkCVHAul5UtozMnc+Cqbwzg+Vf13kx1FrDp/BGVrQJxzE/Jcq3sRPNd5U5sBOd0OU2VE7bq/LwnnkEV5zH0rercoZP3K+vvUNXnOe30SH/GnqTq5Uq9VUxWawXiKBVZbY1Xucvp1wNErwn2Ua2jf6n1FGxUW/OhdF/ZlEx/mqt1unEn5lPfKI46XHfRvE7WX9SDs/LJevWYKk+njwjW1ljtp5Nzp7b6VnGRzXXYR3TyOx3flc+qH+J5PA429eHa4xzmqXyI1wRZXFbf67l9xa6/U8WzN8f9Vzloi/xYA/qsXoXGRbmrel2iPB2y+qrTfWUjkY7s+gO17/hm0Kfj67zygcTJBoOedMa4ckBXuFqnG0c/nT8jy6c5Ip9uLxWeI8oJHejUutJTVjPKs5ufvYNVXJV7Nw9RX9U7ntN7iXpTXWR3tH7Hd+XjrHrMoI/7Yg9oU1Y5lSivx2utDlGOil1/50S9TEdW+a/OsIq7mvcu1ezaE/3UR2NBFU+yepFvRBbvrPK5XfNm/J//fzfrbodhGIZhGL6Q7b9DMgzDMAzDcJp5IBmGYRiG4XHmgWQYhmEYhseZB5JhGIZhGB5nHkiGYRiGYXiceSAZhmEYhuFx5oFkGIZhGIbHmQeSYRiGYRgeZx5IhmEYhmF4nNc+kOifnM3+/OyOvvMnbDs+Ebv9PcGql50ZruYCq1hn1/8KV2Z0dvwz3++YdRiG4a18xDck+Ov2frPG/pP/6v13f/hEZ0h2z7LKBVb2jG7Myg/2TE5wJU8Wc6qnYRiGT+dj/snGPzCzD1Dc4CubSoT7uCi6dzvW1Qfz1Q/tO0Q12WdEZcv03w16VCHozyWimrHKrfsOUQz2We1hGIY/jdf9z/X8pr26+Wv7kR/jfUzXdXwc2qvYbo6vBDW6sBftS2ep6MxRzRvZrug6a4C9A7v7gSh2lYswZwbzuI/3MAzD8JN53TckuAnzRqxX1+tecZt/cER0fHZgPr0+CXrgfFyrqF5B39p75K/yiXj/fM1WqA9jIiG+B6rTHMB9T/HPP//8Xg3DMLyLH/9bNqsbu34AYa3iOkXtvFK8Jvb0cyrbk6AvzuHzKN47z4B63Vc6Etki3VdRzboLetV8usf1q2cZhmH4JF75QMIbtV4p0b5D5usfQNhToj1RvQvJ1p8Czsz7dh3WerbYu10l0wHX05bpAWqzvvZxl24u+Hk/xPW6B9hDT5vGnmK+ERmG4VN49TckvEnjSqFe9wpv8H5zh+/JG77m4lqvLp8Gevbz5Rw6F3VPoe+D6P2wIptj9X6hrVuTfojTGKy7OXaZh5FhGD6JV/5QK1ryGzfJ9MBt1T7Ks4pXolyZf5UHrOx3QO5dOIui/bFfvyqRDnyVXvedNdjZr3xJpY+Icq5yRDYnexj5+++/f6+GYRjexeseSIjenFdwBL+RZzd2sJPfYZxfaVNoz1jZI7JaK7Jauz3Qv4rbrXVXH/lRdycHUdsq39U8VXwVl8GHknkIGYbhE3j9D7XixquS6a7iuVQyO9EPBtUD2N5E90NsxW6e7zyHt525s+oP53rqdQLzIDIMwyfx+m9InOqG7bYd34jd+J36oNNDxm5s5b+yAdrVN1sDjyPuR67qO3U6a+B7hbbMZzcX6ORRqrhhGIZP58f92i9u2pSvRmtF9fDBkfUB/dUPlt3YK7UQwzjG7ua5WlOl0gPtj8DerR3l3CWqh32Uk7rIzjxRHIDN6wzDMPwU/rhvSHiz74xd1YrI6u3kWHGiJ+eOD/Sk09du/xlVP90+3TeKZVyUE2T1CO1ZHrWrbZV3GIbhp/HaB5JhGIZhGP4U/vrrP5QT8Sk3mnWaAAAAAElFTkSuQmCC" alt="" />

解决代码及点评


/************************************************************************/
/*
24. 统计一个单位职工的年龄,要求把相同年龄最多的那个年龄找出来
(可能有几个这样的年龄),并统计出现的次数。 */
/************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
struct ZG
{
int age;
int times;
}; void main()
{
int arr[20]={0}; // 职工年龄
bool iss[20]={0};
struct ZG Szg[20]={0};
int p=0;
for (int i=0;i<20;i++)
{
arr[i]=rand()%30; // 给所有职工年龄赋值
}
for (int i=0;i<20;i++)
{
printf("%5d",arr[i]); // 输出
}
printf("\n");
for (int i=0;i<20;i++)
{
if (iss[i]==1) // iss表示已经处理的数字
{
continue;
}
int num=0;
for(int j=0;j<20;j++) // 查找所有和i相同的年龄
{
if (arr[i]==arr[j])
{ num++;
iss[j]=1;
}
}
Szg[p].age=arr[i]; // 保存年龄
Szg[p].times=num;
p++; }
int maxtime=0;
for (int j=0;j<p;j++) // 查找最大次数
{
if (maxtime<Szg[j].times)
{
maxtime=Szg[j].times;
}
}
for (int j=0;j<p;j++) // 打印最大次数
{
if (maxtime==Szg[j].times)
{
printf("年龄为:%d 次数为%d\n",Szg[j].age,maxtime);
}
} system("pause");
}

代码编译以及运行

由于资源上传太多,资源频道经常被锁定无法上传资源,同学们可以打开VS2013自己创建工程,步骤如下:

1)新建工程

2)选择工程

3)创建完工程如下图:

4)增加文件,右键点击项目

5)在弹出菜单里做以下选择

6)添加文件

7)拷贝代码与运行

程序运行结果

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADcbSURBVHhe7d0JvF1lee/xZ58kxzCTKCFTr9fWqlQCgUBkkEECBCWoOMcJFD+01lZlEJXW1nupKFYRWm/TWtFIGUS9eHtVUAgQELCpzIOlttxer81ADmGKwElIsu961l7PybvfvGva+5z97nPy++LjXmu9w3rXuyP83WegsWXLlqZkrj9zsnxt6JTsDAAAABgbX/jK32dHLSOh9NRTT5VGoyGvO26RHHXsYpkxY9+0AwAAADBaNg3/Rh5+8B75xmWXSbPZHAmnaSjVQDpt2nT5yMfOk+dkMG0AAAAAxsqsPQflwgv+TJ588ok0mKah9C1veYv8yZ9/Xp5rvCjrBgAAAIytWXtMkfPO+WP5/MVfk8Ypp5zSPPzwo+SIk96SNQMAAAC9se6X98qVV17eCqV/fsFfyrPNKVkTAAAA0Buv+q0Z8qEPvLsVSr/+zavkkf8cypoAAACA3njV3H3SUDqQnUuDoiiKoiiKonpcZuST0l+ufjy7BAAAAPTGK+a8pP3L9/+2ZkPWBAAAAPTG785+cXso/fe1T2RNAAAAE8OzG5+VX/7rf8iTT27Mroy9adP2kFe88mWy2x67peesobWGPC+fNb1eKF3xj1dnR/X89ivnyX99xe/JwMDIt68CAAD0xJ0/vUfmH/A7MmPfF2dXxt76xzbIfQ88KkccdXB6zhpaa8izQyh9dN2TWVNY49nHsqOwgUZDGgMNaTYl/VdGaakbbrxJXrv4zbLLLrum5wAAAL1y0w13ypKTXytPPPNcdmXsTd9zV/nhj26XRScekZ6zhtYa8vzOzGneT99rqCyoA+fPL6x5Bx4o+887QOYdcIAckBzb9VQSUENz9l09fpP8j/O/JLc9Hmgb63Lv3S/rCLWPaQ3JbX99tnzvF6E2iqIoiuqs0g/Oelih+/XrGuxH4LefZ22hv9I27e6+ZmPsr+xcq+ozm5FPSv9j/dPZpbBDXjFTVt76sPzdrb+UgcnbZGBKUwYGt8qkpC566/Eyffq0rGfLorOvkZsufqd84UuXylGL3yy77rZ71mLWy62XXig3rM1OUwvkPV94n/xedrbdg/LdT10vM845T47ZJ7uU2nGO+e+/RN6+4wTVDN0of/3le+WAHe4zmnKexb239GIdOfw9SM9/JOtardn+Vn8/8t/TkNb49Sd08R4G5a1Xadtlcl96PFtOdPr84pqPy5X3to5Ts06Wsz52grxEj4P7kp2YrI+cdL788bEzsosAgF5a8ZM75JRTju75J4Q/+MFtcvziI9Pzqmu4c+VKueefVmVn+Q4+7DVyxLHHZmdhuWt4+tnkTL+avT0MtjSTvxrys1t1Df+cXdN7LZQjjj5W7rz1Vrln1fa1pWs45pj0K+StXNn6CnmzqUGzdTp9793a1pDnZTP2qvdJqS191r67yOyZuyY1VWbr8YxdspZ8wfm0krb5779ULrwoq/eLXPmpj8t3d/ik7AB53UlJfHh4yLueVBIkFp+bjT93iTx2+Rc7/5Rvxony0Ys+KcfOCLRVqiG57dLQ+t3KeRb33l2vo4tqu/dD8t2rGrLU3p90f/9B/qXw/aj6nuZU609MuK3jyluvvl+XyWMn/Um21llyw5f1+aw9+fNubVofP1H2Sa/n7YuN00rmvupeacxKn8a5TlEURfW6NOxMGhjoWen9OlmDBtJrrvqb0tJ+ofFu5a2hdTzgveqnmpPSTzY1kH7vmr8bKT3/2W2tQNp+fVVr3IDNr3Ml97Xz5DW0hlAZ7Z/ShRTVs8Ob037T9p4i/+eJdfIvQ/9PHnn8V/KvG/5vel1pRrbvJd1n3vZ/Q1RovmStyUJaix25tv9p8gXnH/Bu/333P1jkgftlQ9v1bI7kr/Q8CVTHH7xGHnh4vdOnlxV4pkCFn6Uf6wB511knyr52PuNAOXD2Wnl8qOT9cK8VvKc7VrX966SC6x26Xx5Ye4gcf9y+rfP9T5KTZt8tDycBWs+TpSSLCf35zd8X67Nh5TflgfkfkOOTUBqeg6IoiupFpZJXPepZZfdtW0NCV1H0Vx3uuPBfLe4aNCg2ksCq62u96lpbYbL1z94BWXD4YfK2d/6+bNu2La3vXL1M7k4CqL7aNW3Xful8GkTTMGrVul86p/6DPWFryCszEkpbCy2orN+qX/2bbJnynEzZZYtMmfqCTE5K6Ue+2sfeiJkv/XX6qoLz2Z2T/m3XZ+o/4O+Sh/STtcdvlEvPu0hW6iefel1+KDfr9bY5kvu547NLjYHHZOUlH5VrfvGgXHPeR+VTl9woj6d9svORulx+YWPT+znnXt9LVz6WXQ+13Zicf05+vEbk3m8l17L7Pb7yopE+I/cKPYt777Z16H2SPVh5uXOvvHVk/UaeNef+Wuk97Lruk3vd3QO31stja2bLjJnJce77ofvvXkvKfU/Ta3n7auPb23PXtsNaC/YiuOfrZO3BB8n+I+NnJs8msm4oW0+ylLXXfy6bL29PtJx90fNkXVfdv0Des2im8+fR7W8V3ofWe7b9fr/4dtL+7QcLx1AURVHhav1tWD8w0+PeVFNf9Mhdgx7rPx8LyvXOd//hDuUKjXcr+a9WP2cNalJyPQ2P2eukpE0rDanJ61HHHSeHHHG4vGPph2Xr1q1pXX3FV0eO9bq2a7/009VsfguYrTDaCqfG1pBXZnsoTSfKr+S/0n4jYfRFLySvm2XKi1qfoDpzpi457qLsKG/uZNGtxsLrrUM9niXHLT5U7n3ggex8e9+R86Eb5cZ75sj8ebNG2u5dfp8c8OWvyhfPWSwzGg/It8/9e1n3hs/IF/Wa1gcacvm5SQDI5khmy+bTvtfJzE9m/b78GZl/3+fk2w9bW/s8Zy1aLEuTPq+fLXLQB5Jrer9kPVdeN1tOs3t9+XTZP5079Czuvd3j5FBWy4/XHdSa45NvFLluuawc0rbWOkTvl87/QWncd9f2sbn3Xy8rVzTkvXb9A8lalof2oL1+cZU+8+sLnqHKe1q0r957VmFt289L9iKw3sfXt7751c7TSq8k60iO93+PzfVV+cQb1srlFycB1+2bVfu+JHt7xQ9k5mL985acO/O1V/4+zFj0aTnt4LvkxpvXS+Phy+XydW+UT7znwMIxO85PURRFaSX/lQSfJDxNKq47Vq6USy68sLS0X2h8WyX/PEvv665B/xmXBr/8Uhs2bEhLnf2Zz4yUcttC4/0KriF5tU8101BofZLuFlaPPm6RHJoEz6Xv/SN58sknR0rP9fpRi5JAmgXK7XNtr5Fr3j7klWntQCLUyS2jn4xOsUA6uFkGBzel15vbtqWvQYH5bM7w9TkyUz912nexnH3x+XLcvlnbvIPk4Hvuk4fb+q6W6y/6IznvnKQuulvmf3p7f3XwBy2IJfXwfXLv7DfK+46fOTK+Me/1SZD8uTyo/2C33bC+7tznXCDXrxFZt16DQmCerFrDs/N9Z8os+bl865zPyy3+97n6z+Le2z3WSvbj9Yvnt473nS/zk+Cr/y/A1nHCvKxfY6Ycd9Kh2VDtm3f/pN97F0vj5s+3nu2bP0/HJA073jurh6/6I/lW40w5u23vQu9Hdm+vRt7Ton1N+3nvWd77o+W/X0V7oeWtd8bMZCOtLas0RXrXtGYcf7IcvOZuech7H/19efzmb8j1s86Ud2fryJuvbB/2f++ZMuu6C5L3Zo28/rQs4JaMoSiKonas1j8H0pdCP7/zzrbvmcwr7Vcqu5+7Br2mR0WlNm3alJa6+IILRkq5baHxbpm2NSRaoVGvaQCdlJ6n17LvKW1MGpDbb7k5ec6fyVe+9Kcj99TSc71+x823JHMk/TWUJmPScRZS02MNpM499VpBGfvHerCTWyYNo2kg3ZR+Sjp5sPXl+wceelgeePChtPTbSoeTxT///PNpW2i+VqWN7dcevl6ubxwi84I/5DNfDlzw89YnSCPX5sgbPv038qWvaP2JLGob58/fOm+/ppUEJg2y6V+a9/RacjDnTXJeOu/2OicNH3nzZONGjufLu9NxH5LG5R+RT5x9odySfsLZamt7Fvfe7nFSKr2Wneul1rk26El72/ZrOfcfukG+cvZH5IrGh1rP9ek3SSvnJm3pX9vvrfWLKz8i35Lfly+9NwvGIxV6P1r3b+vX9p4m7bn7mrXbuJHKrvlraztv9Un7jZR/zV9v0r7uMRkaaV8vQ+tEZs3c8f9saKnkaOR8x31ZLw/dt1rk7q8le637nbTfLbL2R/9dPnFl+6fiyX9K9qF1P5WcVR5DURRFeZX8rTP9aRc9KKrEo48+Wlqp0HinRg6dNWglJ8WV2Lx5c1oXXXjeDmVtqdD4tkr/kxy21mD0E8wkNbYCZVrZp5pZqPzpipvln++4s+1+Z537FyPHel3bb7vppuSfv61A2wq1WaXHrXnNyD7klKkcSvUGa9Y8Kmf+lyXywVlvltP2ebu8Z++l8q7d35fNsF3r+w70m2FbP/QUmi8tbdO/7Pyh5XLuZWvk5NNOSn+IpDH0E7n4rM85Qa4h+y9+k8i9920PEnXmn3ewLFj9j3LFTU6Ieuh6uU6SwJR+upquVicc6XvTQ1m/pB6+YnnrU7Yd2u6XW2xO957J+m9J+8yURZ/4rJw8Z7U8tj5rS6r9WZx7e8d6amPSsvMd1rFebvlx61PP9Dzv/uvXypok3NgnvUMP3iVrgvdO5vvSH8pPZn1Wvvw+P5C2Kvh+6F927r+nRfuqlYy/5777R9qGbvq6XLd6oRyYfvKoa1sj67M/D23rLtuLrNrWO+9kOVmcMemfhTdln7beL1dfsX0dD1/xd3LPHPtzkrcvus/L5MuXbK8PLBCZvSTr5/55LtkHvd+6ZNwnl4hcd/lPsvWW7B1FURS1Q6lJSVgK/YS6W+qFF14oLRUa71b65fuEu4ZWYLMgGC4VuqdfKjTeLX1mNbIXybGuLQ2QSbtea73qp5rZugcmJYHzDvmL/3bWyL0+ef4X5TVHHZm+2jVt/+fb70ifqfXpaBZEs3tZOE3v564hp8zI7yldt7H1cXCe//Li3WTv3ZIHTG6+dfMLMmnypOR4StKyVZpbtsjmLfqT9yJbtm6Rrdu2pYvQxV38V8vkhDe/S3bb4feUrpObvvhZ+dHq7FTNebN86ryTZOQ3Oj72Y/nShXfJQef/qSzaN7uWjvu6yGl6zT3Omke05l930t/Kew7ILqXukys/9rdyd3YmslA+eOkHZX89TO+3Rk5qO/9fSfBpWXCGM1db2/Y51q/4C/nCD/5z5FnW/8MfyDf0WxvVIX8gFyfhZDtn/eLcu20dut4fysyRPfCeuW0dc+XkU2bLj+6ZPbKPDwXv39ob2/vZhywUSfrscO8HviFnX7b9d5W1JPcofD9K3lOVu6+t8etmLZS777L7Ou9PYmR/E23r1gsle9FStH/t9xL3+d3nqLQvLbr/P07C67nJ/wFo3cv585yzD+l7ttbul+3prOy9y907AEDIdT9YKae+6Vh56tnsE8Yct664MQ1aZRa+9kg55vgTsrOwvXcblO//40p5wymt3yXaT2vYOJwEtjatDxCTSJge3XrDDfJPP729dSnxmqNeK6878URZ6V0/LLl+THI9jZQ6cHu2HLHH1Mlta8gzc48Xtf9rRh/7TfFGff8fvqZRNzvb0ZQpk5PmSfLC5k0jj6dm/dbL5MBDj5Bddh29f83o+hsvkM+vPUW+8n434I2C5B/4f/m5NfL6v3KCyRgbeZbF60bn3klgOuv62fLpT3pBcAyN2fvRrZy96Nv1AgBG3Y/+9y3y1lOPk6efa33C2At77TpF/uf3b5aT3/i69Lyf1vDM8+4aNNe5qa2lkQZU97rlv+RaOiTroZ90Nls9R3poVsx+Peieu7SvIc++uw/W++X5pyz9gCx+y7tz67hT3iGvW/JWOdG7Pn/hkTJ1l12Cc3Za+574RjnkrnvkoUBbNzX04M9lzZzZrS8z96jsWW7q6N6PyU0XfcPZh/vlyq+vktkLDoryDKP9ftSr6nvRH+ulKIqielb6peRJvSv7QZ9+XEPrWF+13PynY1pfeteE2erbutbql/XVv7ILyX+3XrNzu5Z+WV+PQ2sIlBn5pHToOf/j3J3IA1+Xj31N/9VZr5EPffVDMq91tTe6vfdj18sXL7hW7Cvmc950gZx3wszsbCfDXgAAPDffeKcccvCrZNasXn39UGTt2vVy1z2PyHEnHJGes4bWGvLss+vk9i/fP/7c1qwJAABgYvjNxufkn352rzz//HB2ZeztsstUOezwg2T3PVrfusgair+F8yW7TmoPpRueL/g9owAAAMAYePEuA+3fU5p+EwBFURRFURRF9bIyI5+UPjG8409fAQAAAGNp+tRG68v3S5YsaV62/OrcULpqxbXZEQAAAFDfaaedJo+s3pidtdNQesbpS6uF0lWr9KfDAQAAgHrOP/98mTt37uiF0mXLlmVXAAAAsDMYHh6WoaEhmTx5sgwODqb/+lCX/p7RZrPZ9vtGlf0OUh2/adOmSqG0fWYAAAAgAkIpAAAAoiOUAgAAILq+/J7SlStXyrHHHpud7aisfayF7q/X8sRcax5bb4y15b1/oT3s5fr8+5e9x/34vprx8P7G2r9+XV/Z/ft9/1y21lhr9Pl7Z1hffVXe/7Hg75G7hrz9U/22h7H2z5TdP9S+U39PadEfLlXWPtbK7q9vplW/irmHefe26/7+9Wqt/v2Ve++y9n4Sc1159+6X/evX9ZXdP/b6TJV7xlhXVbZ/7j72k35fX6z3tuqf/37eOxX7fxtl94+9PtU3oVQ3o2hDytrHWuz7j5ZYz1B3/ybCXscwXt7fXuv39fW7qvvHHk9M/O+nO7H3r+z+3a5v0qRJ6Seo+tqtvgmlZf/vJvb/++n39VVhf+hirLPO/nTzP45OjYf3r8x4eH9jvLdqvK+v6vrHSpX7x/zzh7HV73/+Yq+vTOz1ld2/m/VpENUv5x922GHpa7fBlB90GiP99jfo8fYPjJjrDO2VHWubtfeTfn9/3XX141r7aX1l9+/H/ev3P39G12nVj/p9ff3A9qboz1qVPuieBlCt/fbbT6ZOnSpnnnlm18GUUDoG+vl/EP7f8NzjfhB7PUXvnV5zr/P+Vhfa135Zm+qX9YXW4Sprj03X5+5bjD0M0f1yS/XL2lS/r69f2J7YHoVU6YPuWSDdf//95dWvfrUcf/zxctBBB8mll17aVTAllI6yfv0fhP3Nzsr02zpVrDWN57+Z2ftqZfrxWfpxTa5Y6yv789fPfz51TW6Zflwrxqcqf/7H89/DxxsNnaeffrq84x3vkLe97W1y6KGHpuH08MMPl1tvvXWHn9CvilCKvhLrbyb+38z03K65+JsexkLZn7+ydhTr9/3i/Sxme8Of//6xdetWWb58ufzZn/2ZvOtd75LFixfL0UcfLQsXLpRjjjlGtm3blvWsp29+T2neHzD3D2FIr8JB1ftbv16tqxP+s/RirVX2L9Snn95ftw/vb7tO3t9e7uF4X1+V9Y+lOvePuY9F+nVdpp/XN17+/Fm/fn9vTb/sX1l7L39PaV/+8nwAAADEt1P/8nwAAADsfAilAAAAiI5QCgAAgOgIpQAAAIiOH3QCAABAkP6g0oMPPii/+tWvZMOGDdnV7fJ+0GnvvfeWl7/85ekPOPHT9wAAAOiKhtIf/vCH6b/ffvr06dlVSYOo0nb9taTN5rb0mv4O082bN8tTTz0tjz76b3LUUUeNz1Dq/64s93d4xf49X1UUrb8XOtk/1a972E/rAgBgZ6Sh85vf/Kacdtpp6XkreG6TbRpCtzXlN795Ng2iW5NkunXLVnl++Hl55pmNsvdee8ptP10pb3/b28ffr4SyMKJBxMJIKEhZu9uvH1Rd/1jpZP/6TegZAABAfBpGtfTf1pRWEkxbn4q+kITOzWnw1Hr++eGRtrr4QSf0BTeQAgCA/tMKpduDqX5iumXrFtmyZYu8kIRTDaj66akF2Lr6JpSO90/HYq+/7P6x1wcAAFCkLz8pLfrUTNus+lXsT/2q3D/2GvPYe2vrAwAAO4e+C6V5YUnP3VL9GFzy1t8rVe4fe41F+v39BQAAY6OvQmk/h6UqCKQAAACd6ZtQ6oclPbdryj/vN2XrH2ux7w8AACa+SZMmyeDgoLzoRYMydeqLZM899pC99tpTpk3bW6ZPnya7775b1rO+vvzyfShMhcJWP37al7f+Xol9/06Nl/cXAICd2cDAgCw+8QT5+Mc+Jp+/8HNy6SUXy1f/+lL5/rXfk/vvuzsJqlOznvXxb3QCAABAkP3y/Pe///3pr3kaGJiUBNKPypFHHil7T5uW9RLZfffdZY899pBp014iq1evkb322kPu/Nnt4/OX5wMAAKC/6e8nvfgrl8hb3vpWOfbY18nChYfJggWHyu/+7itln31mpiG2U4RSAAAAVDKWX77vKJR2+z2LReM7mbvb9YwHdZ8xrz/7CwAAuvHqV79ajj76aDn8iCNGav9582T2nDlZj86Mu09KJ3JA6vbZRiOIEkABAECevvzyvYaXKuXyz33arj9xXdSvrH086/bZQuNtT6uayPsLAAC601dfvreQ45fKux6i81ihGnfP8vbO3/PQe1A2BwAAQJ7FixfLKaecIicmr1YLX/Maedlv/3bWozPRvnzvB1cNR3asr0VhyfrFUhbkugl6oWezvfHLpX3c8q/ZuT/en0eFrlXh3s/uCQAAJg798v3Z55wri44/XhYsOET22+/V8opXvErmzPkt2XPPab378r2FmtHmzmthRs/9YKPnocprGwtl847Wfavcx30v9NjO817L6Jyhymtz2bm7Dr8PAAAY37Zu3SqbN2+WTZs2JwF0kzyzcaM8/fQz8uSTT8kTTzwpv/nNs1nP+mqFUjds+BW67nL72KuVG5r02Pq4x0rP/Sq6PppsrXnK2julc9rzuPOHntHta/S86rq0r19F1wEAAEZLx1++D4WU0DXjt7lVpKy9V8rWWuVZqrJwGQqZeYr6unNVDah16dxV1woAAODr2feUumHIP/bLvV5Vnb7jRZ2Q5/bVvfDH+uehPkU6eS/qzA8AAHZu0X7QyaXhJVRl3GClr1WCk/apE7B6xdalFXp2u563dnd86LwTOraT/VWhZwAAAMhTOZRawLHQ4Z7nXbNy6XmVgGP9dhb6rN08rzvejkPz6bWx2lt7T8dibgAAMLFVDqUWcvKqqI9xw5C+usHUPa4iFKz88xDtU6VfPynaN1doTzpVd39tTdZHz/PWCQAAxp9ms5mW/loorWYzed3aOm7VVtmm15LqRE+/fF8UcvTYQkwoELnK2ot0Gpb8cXXPe8Vfg79Pdq1obaFxVenYorkBAMD4o2F0axJAt2zZkv5aKD1unb/Qqq1bRtq0byeifU9pKLxYWCoKRGXtY0XvGSoTatPqVuh59dzfO2X31LZO96nTcXZvvwAAwPg2bdo0eeqpp6TRSILjwIBMmjQgkydPkilTJsuuu+4iu+22m+y55x5Jv73kJS+eLvvO2Cf9XaZ777V3NkM1PQ2lFpYs+IRCi17T9pCywGTjivrl3bcflT1HaJ/sWqjdna+sPcT6l/UDAAATx0tf+lK5/fbb5Yorr5Crv32VXPOda+Q7371Gvvu978iPf3K93LjiJ7JixQ1y080r5JaVN8mtt90i//7vv5QZM2ZkM1S0ZMmS5mOPb2z+y38+E6zly5c3P/zhD+vnsIWVBJXg9bIKjat6LVSdrqPfqu7z6mtojNvut7nX89r9qtqPoiiKoqjxX8PDw81f//rXzbVr1zY3bNjQfPLJJ9vqqaeeGnl16+mnn24+88wzzfXr16fjVShnamkO1Tza0SelSTDJjrar88mZO94fp22huap8gqfG6yd4/p6WPYf1t376qpU3T958Niav3Ve1HwAAQB3Rvqe0U37oGk+6XXve+Drzjuf9AwAAE1fHoVTDTZVy+ec+bbdP7vKUtfezbtceGm97VtV43j8AADBx1Q6lFoL8UnnXQ3QeK7S4e5K3N/6ehva4bA4AAIB+E+3L935w1fBkx/paFKasX0ydBr7Q2u3Z/XLZ/dz7hs798f48KnStCvd+dk8AAIDRUCuUWugZbe68Fnb03A8+eh6qvLaxMhpzl82h7e5e67Gd572WsX3xK6/NZefuOvw+AAAAnWroj+BftvxqeWJYf/J/R6tWXCurVq2SZcuWZVeqhxE3LBWN8UOV9nWDj9/uymsvG9cp/zk6vYetz11n2Zrz+obmUmXzqbw+obmUXfPPAQDAxDM8PCxDQ0MyefJkGRwcTH95vqvRaKT/Bid9dem5lo7ftGmTzJ07Vx5ZvTFrbTd9akPOOH1p51++1zDiVt4147e5VaSsvZdGK4hZ4PODX5Givu5ctsbRpnNXXSsAAEBdPfueUjcs+cd+uderqtO3Ezb/aAazOnO5fXUt/lj/PNSnSCd7XWd+AACAItF+0Mml4SZUZdzgpa9VgpX2qRPAfP74qnPZOK3Qs9n1vPnc8aHzTujYTvZPhZ4BAACgU5VDqQUgCyXued41K5eeVwlA1q9f6FrcMlXX6I+ryx1vx6H59NpY7Z29Z2MxNwAA2LlVDqUWgvKqqI9xw5K+usHUPa4iFLz88xDtU6VfLxXtiyv0zJ2qu3+2Juuj53nrBAAAqKunX74vCkF6bCEnFJhcZe1FRiNMueO7nasu/97+Pti1onWFxlWlY4vmBgAA6ES07ykNhRsLU0WBqay9F/T+bnUj9Dx67u+NsvtpW6f70Ok4u7dfAAAAo6GnodTClAWjUKjRa9oeUhaobFxRv7z7xlC2ztA+2LVQuztfWXuI9S/rBwAAMNp6Fko15LhVV5WgpO39HqhsbXWeR+mrjbFxfrs/X1m7z/qX9QMAABhtHYVSCzquOkHGHe+PywtFRfMXzdevqq7T7Ve0L36b7YnfHnrvXKF7lI0BAADoVrTvKe3URA5I3T5b3vg68xJAAQBADB2HUg0vVcrln/u0XT+pK+pX1j6edftsofG2p1VN5P0FAAD9q3YotZDjl8q7HqLzWKEad8/y9s7f89B7UDYHAABAr0X78r0fXDUc2bG+FoUl6xdL3tos5Fl1IvRsOpde98sVunfo3B/vz6NC16pw72f3BAAAqKJWKLVQM9rceS3M6LkfbPQ8VHltYyFvXruu6/afpRNlY7XdfS/c++a9ltE5Q5XX5rJzdx1+HwAAgDy1QqkbNvwKXXe5fezVyg1Nemx93GOl534VXR9NttZec/fH3wuf29foedV1a1+/iq4DAACMlo6/fB8KKaFrxm9zq0hZe69UWasajeBq4TIUMvMU9XXnGo31hejcVdcKAADg69n3lLphyD/2y71eVZ2+Y8ENZLaWbkNanfH+/f2x/nmoT5FO3os68wMAgJ1btB90cml4CVUZN1jpa5XgpH3qBKyqQkGszn1sXVqhZ7freXO640PnndCxneyvCj0DAABAnsqh1AKOhQ73PO+alUvPqwQc6zcedbJuHdPN87rj7Tg0n14bq72193Qs5gYAABNb5VBqISevivoYNwzpqxtM3eMqQsHKPw/RPlX69ZOifXOF9qRTdffX1mR99DxvnQAAAL6efvm+KOTosYWYUCBylbUX6TQs+eP8c1uPe73TNXbDX6O/Brvm9vOFxlWlY4vmBgAACIn2PaWh8GJhqSgQlbWPFb1nqFxFbZ0KPa+e+3un7L7a1uk+dTrO7u0XAABAFT0NpRaWLPiEQote0/aQssBk44r65d23H5U9R2if7Fqo3Z2vrD3E+pf1AwAAqKtnoVRDjFt1VQlC2j7eA5Otvc7zKn21MTbOb/fnK2v3Wf+yfgAAAHV1FEotyLjqBBV3vD8uL/QUzV8033jh72nZc1h/66evWnnz5M1nY/LafVX7AQAA1BHte0o75Yeu8aTbteeNrzPveN4/AAAwcXUcSjXcVCmXf+7TdvvkLk9Zez/rdu2h8bZnVY3n/QMAABNX7VBqIcgvlXc9ROexQou7J3l74+9paI/L5gAAAOg30b587wdXDU92rK9FYcr69ZIb8tyqK7R2nUev++UK3Td07o/351Gha1W497N7AgAAjIZaodRCz2hz57Wwo+d+8NHzUOW1jQVdl1udKluftrvzu/fLey3j7o1beW0uO3fX4fcBAADoVGPJkiXNy5ZfLU8MN7NL7VatuFZWrVoly5Yty65UDyNuWCoa44cq7esGH7/dlddeNq4uW/9ozWnrc9dZtua8vqG5VNl8Kq9PaC5l1/xzAAAw8QwPD8vQ0JBMnjxZBgcHZWCg/fPMRqMhzWYzfXXpuZaO37Rpk8ydO1ceWb0xa203fWpDzjh9aedfvtcw4lbeNeO3uVWkrH08ssCXFwhDivq6c1lYHG06d9W1AgAA1NWz7yl1w5J/7Jd7vao6fbth6xqN+9UJeW5fvbc/1j8P9SlS53msb535AQAAikT7QSeXhptQlXGDl75WCVbap04AM+667J515rH7atl4l13Pm9MdHzrvhI61tRTd22V9Qs8AAADQqcqh1AKQhRL3PO+alUvPqwQg6zdR6LN08zzueDsOzafXxmrv7D0bi7kBAMDOrXIotRCUV0V9jBuW9NUNpu5xFaHg5Z+HaJ8q/Xx6v7prrMp9Fn3Nu0/omTsVmqtobluT9dHzvHUCAADU1dMv3xeFID22kBMKTK6y9iKdhim7nzu+0zV0w127HvtrsGtuP19oXFU6tmhuAACATkT7ntJQuLEwVRSYytrHkt7XrdEQeh499/dG2X21rdN96HSc3dsvAACA0dDTUGphyoJRKNToNW0PKQtUNq6oX959YyhbZ2gf7Fqo3Z2vrD3E+pf1AwAAGG09C6Uactyqq0pQ0vZ+D1S2tjrPo/TVxtg4v92fr6zdZ/3L+gEAAIy2jkKpBR1XnSDjjvfH5YWiovmL5utXoecOsX766o6x/m678ufx20PG4/4BAICJJdr3lHYqL7yNB92uPW98nXnH8/4BAICJq+NQquGmSrn8c5+26yd1Rf3K2vtZt2sPjbc9q2o87x8AAJi4aodSC0F+qbzrITqPFVrcPcnbG39PQ3tcNgcAAEC/ifblez+4aniyY30tClPWL5Zugl5o7fbsfrm0j1v+NTv3x/vzqNC1Ktz72T0BAABGQ61QaqFntLnzWtjRcz/46Hmo8trGwmjNWzaPtrt7rcd2nvdaxvbFr7w2l5276/D7AAAAdKqxZMmS5mXLr5YnhpvZpXarVlwrq1atkmXLlmVXqocRNywVjfFDlfZ1g4/f7sprLxtXl7/+bue29bnrLFtzXt/QXKpsPpXXJzSXsmv+OQAAmHiGh4dlaGhIJk+eLIODgzIw0P55ZqPRkGazmb669FxLx2/atEnmzp0rj6zemLW2mz61IWecvrTzL99rGHEr75rx29wqUtbeK1XWWpUFvrxAGFLU153LwuJo07mrrhUAAKCunn1PqRuW/GO/3OtV1enbL+qEPLevPqs/1j8P9SnSyV7XmR8AAKBItB90cmm4CVUZN3jpa5VgpX3qBLDRYvfVCj2bXc9bmzs+dN4JHdvJ/qnQMwAAAHSqcii1AGShxD3Pu2bl0vMqAcj6TRT6LN08jzvejkPz6bWx2jt7z8ZibgAAsHOrHEotBOVVUR/jhiV9dYOpe1xFKHj55yHap0q/XiraF1fomTtVd/9sTdZHz/PWCQAAUFdPv3xfFIL02EJOKDC5ytqLdBqm/HGdztMtfw3+Pti1orWFxlWlY4vmBgAA6ES07ykNhRsLU0WBqax9rOg9Q9Wt0PPoub83yu6pbZ3uQ6fj7N5+AQAAjIaehlILUxaMQqFGr2l7SFmgsnFF/fLuG0PZOkP7YNdC7e58Ze0h1r+sHwAAwGjrWSjVkONWXVWCkrb3e6CytdV5HqWvNsbG+e3+fGXtPutf1g8AAGC0dRRKLei46gQZd7w/Li8UFc1fNF+/qrpOt1/Rvvhttid+e+i9c4XuUTYGAACgW9G+p7RTEzkgdftseePrzEsABQAAMXQcSjW8VCmXf+7Tdv2krqhfWft41u2zhcbbnlY1kfcXAAD0r9qh1EKOXyrveojOY4Vq3D3L2zt/z0PvQdkcAAAAvdZYsmRJ87LlV8sTw83sUrtVK66VVatWybJly9JzDTF5QacohCrrE+rrX6syn6nTtxt6H5e/3jzdri3v+dzrRfdX2s+fJ29eX51+ripjAABA/xoeHpahoSGZPHmyDA4OysBA++eZjUZDms1m+urScy0dv2nTJpk7d648snpj1tpu+tSGnHH60nqflFYNJ3W581qw0XM/5Oh5qPLaRpPNp+vy1+qyduvTqbL1a7t7D/eeea9ldM5Q5bW57Nxdh98HAAAgT61Q6oYNv0LXXW4fe7VyQ5MeWx/3WOm5X0XXJwJ3f/y98Pl7qfTcHVdE+/pVdB0AAGC0dPyDTqGQErpm/Da3ipS190rZWqs8S1UWLkMhM09RX3euqgG1Lp276loBAAB8HYfSutww5B/75V6vqk7fbtm9ikJYlT5l6ox1++q9/bH+eahPkTr7OxrPDgAAdi49C6VFNLyEqowbrPS1SnDSPnUClq9K4KrSx2fr0gqNs+s2t88dHzrvhI61tRTd22V96jw7AABA5VBqAcdCh3ued83KpedVAo716ye25qJ1VekTov27eV53vB2H5tNrY7W3nT47AABA5VBqISevivoYNwzpq4UY5R5XEQpW/nmI9qnSz+cHLj2vu+ZOuc+qr3n3dft1KzRX0dy2Juuj53nrBAAA8PX0y/dFIUePLcSEApGrrL1It2Gp2/FjzV2bHvv7ZNeKniE0riodWzQ3AABASLTvKQ2FFwtLRYGorH2s6D1D5cu73qnQ8+q5v3fK7q1tne5Tp+Ps3n4BAABU0dNQamHJgk8otOg1bQ8pC0w2rqhf3n37UdlzhPbJroXa3fnK2kOsf1k/AACAunoWSjXEuFVXlSCk7eM9MNna6zyv0lcbY+P8dn++snaf9S/rBwAAUNeohVI34JRx+7kBx66HQo9/Le9eddZh6vSv0resT1G7tYX2wLjjrZ++hp7dbQ8pa/dV7QcAAFBHrVBaFra6pYGnm3voWBufN4/1cavo+ljr1X0AAAD6WWPJkiXNy5ZfLU8MN7NL7VatuFZWrVoly5YtS881RNmnZVUCVeiTNXcOX1Gby/r5a6gyVuXdp+z+7v3c+4fWovy5/PnLzn2h9tB9TdFcAAAARYaHh2VoaEgmT54sg4ODMjDQ/nlmo9GQZrOZvrr0XEvHb9q0SebOnSuPrN6YtbabPrUhZ5y+tLsv32vgcSvvWhENVG7lXXPptdD96tD+/tzuvEXc+7n9866XCT2jyrturN3u697bPQcAAOh3tT8p9RUFJzcUhfppu14vCk+h9rwxRXOF7l+VzVl03yKh8XZc9uryr1XpAwAA0KleflLadSh1VQ1E1q8sZIXm02sqdJ9Q/9Fk9zZ6r7w1+m2hscofH5pP+eOV3aNMaD4AAIAyfRlK3/nOd2ZX2gNVFX4oKgpeZQHK7tnpeFVl3Xlr9u/hnofmDa2nbIyrbHyZOn0BAABcff1J6WiEHAtiOk9ZKFN2P7t3lTEuf71lz1DU7ra563D7Vx2vys59ee3udTsumwsAAKDIuAqlep4nLzwpvy00b96532byrvu0Xxl/ntAYfz1FfVRofe41d7zfT4XGu6y9rB8AAEAVvQyl7TN3SAOQXz4NSt2EpU7H5XHX6leI22bH+jyuUB9jfW0f/LF67o4NtdurW3ZNufcDAAAYT0YllPpByUKSyw9pLu3f60Dlr9etTvjj/XN7PtsH93m1j//8em5jlbXbWCu75vYFAAAYb0bly/fuucm7rkJtFqosYOWNVZ3cM0/dMX7/0Pg6c1aZr4j2L+PPb+rcx8QeDwAAemdcfPneDRd67FddGlC0dOxYhRVbl7s+u2dI0XMUtZXRsaMxXsv2zUq5r3YMAADQzzoKpRaGjIUftzph8+prTHb/vLW46wz1CT2/9rHS9lCfIqHx/hzWpvRVz315Y6uKPR4AAExMHYXSokARCkKmrM3m1deivkb7uJV3Telx3rrrBiRbn7/evLI+7qvL7+ue27Wi8Ur7+W16buMBAAD6Wdf/RqdQGApdM36bhaZQ/7x5iuavyu6bp9v5e6Vo/9Ro7BUAANg59fJ7SrsOpQAAAJiYxsUPOgEAAACjhVAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAIiOUAoAAIDoCKUAAACIjlAKAACA6AilAAAAiI5QCgAAgOgIpQAAAKhs0qRJMjg4mNaUKVNGXq20vROEUgAAAFSmofPII4+U+fPnp7VgwQJZvHixnHXWWbJs2TIZGOgsXhJKAQAAUNnWrVvljjvuSAPpEUccIaeeeqp8+MMflqVLl6av27Zty3rWQygFAABAZRpKtZYvXy4zZsxIw+krX/lKWbhwYRpIta0ThFIAAAAUajQabaXhU+uzn/1s+uX8/fbbr6tAqgilAAAAKKTBMxRMm82mvOENb0hf9dzvUwehFAAAAIU0lOoPMPmhU4Poli1bug6kilAKAACAQhZIfXbNDaOhflUQSgEAAFAo9ClplaqDUAoAAIBCeaFU2Wu3CKUAAAAo9Nxzz3VUdTSWLFnSvGz51fLEcDO71G7Vimtl0aJF2RkAAABQz9y5c+WR1Ruzs3bTpzbkjNOXlofSV83ZIzsCAAAAOtN1KAUAAADGioVSvqcUAAAA0RFKAQAAEB2hFAAAANERSgEAABAdoRQAAADRjfz0PQAAABDDyK+Eys4BAACACET+P1u+PObjqJ58AAAAAElFTkSuQmCC" alt="" />




基于visual Studio2013解决C语言竞赛题之0524职工年龄的更多相关文章

  1. 基于visual Studio2013解决C语言竞赛题之0401阶乘

      题目 解决代码及点评 这个是一道经典的教科书题目,基本上每本基础的c/c++语言教科书都会有这个题目 用来演示循环语句 #include <stdio.h> #include ...

  2. 基于visual Studio2013解决C语言竞赛题之0205位数求和

     题目

  3. 基于visual Studio2013解决C语言竞赛题之0201温度转换

    题目 解决代码及点评 #include <stdio.h> #include <stdlib.h> void main() { float f; float c; float ...

  4. 基于visual Studio2013解决C语言竞赛题之0409 100以内素数

       题目 解决代码及点评 在已经知道素数是怎么判断的基础上,增加循环,可以判断出100以内的素数 /******************************************* ...

  5. 基于visual Studio2013解决C语言竞赛题之0408素数

      题目 解决代码及点评 判断一个数是不是素数的方法,一般是看n是不是能被n以内的某个整数(1除外)整除 为了提高效率,这个整数范围一般缩小到n的平方根 如果在这个范围内的整数都不能整除,那么 ...

  6. 基于visual Studio2013解决C语言竞赛题之0407最大值最小值

      题目 解决代码及点评 这道题考察循环和比较 /*********************************************************************** ...

  7. 基于visual Studio2013解决C语言竞赛题之0406数列求和

      题目 解决代码及点评 这个题目,还是考察for循环的使用 以及数列规律,该数列的特点是第n个分子 = 第n-1个分子 + 第n-2个分子,分母也是此规律 而另外一个规律是第n个分子和第n- ...

  8. 基于visual Studio2013解决C语言竞赛题之0405阶乘求和

      题目 解决代码及点评 这道题和上一道题类似,第n个累加项 = n-1累加项的n倍 由于有这个规律,我们可以用一个for循环实现 但是例子代码并没有这么做,大家可以回去修改下代码,使得代码更 ...

  9. 基于visual Studio2013解决C语言竞赛题之0404循环求和

      题目 解决代码及点评 这道题考验for循环和一个简单的算法 因为每次累加的值有规律,后面一次累加是前面一次累加的两倍 所以可以用简单的循环,计算累加项和累加结果 /************ ...

随机推荐

  1. poj1061

    构造方程 (x + m * s) - (y + n * s) = k * l(k = 0, 1, 2,...) 变形为 (n-m) * s + k * l = x - y.即转化为模板题,a * x ...

  2. 框架技术--Spring自动加载配置

    今天项目中遇到一个问题,一个方法在服务启动后会自动被执行,查看了下配置未发现有定时的配置.但是后来发现是spring配置了启动时默认加载了方法. 代码: <?xml version=" ...

  3. Android的电源管理框架

    Android的电源管理框架 Android通过锁和定时器来切换系统的状态,使系统的功耗降至最低,整个系统的电源管理框架分成五个部分:应用层,framework层,JNI层,HAL层和内核层.电源管理 ...

  4. BlogUI的使用

  5. How Many Answers Are Wrong(并查集)

    Description TT and FF are ... friends. Uh... very very good friends -________-b FF is a bad boy, he ...

  6. HTML5 事件

    下面的表格列出了可插入 HTML 5 元素中以定义事件行为的标准事件属性. Window 事件属性 - Window Event Attributes 表单事件 - Form Events 键盘事件 ...

  7. python2.7_1.4_将IPV4地址转换成不同的格式

    代码如下: # -*- coding: utf-8 -*- import socket from binascii import hexlify def convert_ip4_address(): ...

  8. 安装duetdisplay遇到的问题

    1.报错failed to correctly acquire vcredist_x64.exe ifle:CRC error 已经确认了 和墙有关系,通过FQ可以正常安装了. 2.在PAD屏幕上面播 ...

  9. poj 2309

    http://poj.org/problem?id=2309//找规律 可以看到每个根节点都可以将其在同一层的最左边的根节点整除,并且最大值为该节点加上最左边的节点值-1,最小值为////为该节点减去 ...

  10. (Problem 37)Truncatable primes

    The number 3797 has an interesting property. Being prime itself, it is possible to continuously remo ...