写了一个早上...就因为把长度为m的也算进去了...

dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j)表示dp(x-1, j)对dp(x, i)的贡献.然后用矩阵快速幂就可以了. 时间复杂度O(M3logN + M)

-------------------------------------------------------------------

#include<bits/stdc++.h>
 
using namespace std;
 
const int maxn = 25;
 
int fail[maxn], S[maxn], N, M, MOD;
 
struct matrix {
int n, m;
int a[maxn][maxn];
matrix(int _n = 0, int _m = 0):n(_n), m(_m) {
memset(a, 0, sizeof a);
}
void unit() {
for(int i = 0; i < n; i++)
   a[i][i] = 1;
}
matrix operator * (matrix o) {
matrix ret(n, o.m);
for(int i = 0; i < n; i++)
   for(int k = 0; k < m; k++)
       for(int j = 0; j < o.m; j++)
           ret.a[i][j] = (ret.a[i][j] + a[i][k] * o.a[k][j]) % MOD;
return ret;
}
matrix operator = (matrix o) {
for(int i = 0; i < n; i++)
   for(int j = 0; j < n; j++)
       a[i][j] = o.a[i][j];
return *this;
}
matrix operator ^ (int k) {
matrix ret(n, m), t = *this; ret.unit();
for(; k; k >>= 1) {
if(k & 1) ret = ret * t;
t = t * t;
}
return ret;
}
};
 
void kmp() {
fail[0] = fail[1] = 0;
for(int i = 1; i < M; i++) {
int p = fail[i];
while(p && S[i] != S[p]) p = fail[p];
fail[i + 1] = S[i] == S[p] ? p + 1 : 0;
}
}
 
int main() {
scanf("%d%d%d", &N, &M, &MOD);
for(int i = 0; i < M; i++) {
char c = getchar();
for(; !isdigit(c); c = getchar());
S[i] = c - '0';
}
kmp();
matrix Q(M, M);
for(int i = 0; i < M; i++)
for(int j = 0; j < 10; j++) {
int p = i;
while(p && S[p] != j) p = fail[p];
if(S[p] == j) p++;
Q.a[p][i]++;
}
matrix ans(M, 1);
ans.a[0][0] = 1;
ans = (Q ^ N) * ans;
int tot = 0;
for(int i = 0; i < M; i++)
   if((tot += ans.a[i][0]) >= MOD) tot -= MOD;
printf("%d\n", tot);
return 0;
}

-------------------------------------------------------------------

1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 2236  Solved: 1368
[Submit][Status][Discuss]

Description

阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0

Input

第一行输入N,M,K.接下来一行输入M位的数。 100%数据N<=10^9,M<=20,K<=1000 40%数据N<=1000 10%数据N<=6

Output

阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

HINT

Source

BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )的更多相关文章

  1. [HNOI2008] GT考试(DP+矩阵快速幂+KMP)

    题目链接:https://www.luogu.org/problemnew/show/P3193#sub 题目描述 阿申准备报名参加 GT 考试,准考证号为 N 位数 X1,X2…Xn(0 <= ...

  2. [BZOJ1009][HNOI2008]GT考试 DP+矩阵快速幂+KMP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1009 我们令$dp(i,j)$表示已经填了$i$位,而且后缀与不幸运数字匹配了$j$位,那 ...

  3. BZOJ 3329 Xorequ:数位dp + 矩阵快速幂

    传送门 题意 现有如下方程:$ x \oplus 3x = 2x $ 其中 $ \oplus $ 表示按位异或. 共 $ T $ 组数据,每组数据给定正整数 $ n $,任务如下: 求出小于等于 $ ...

  4. 【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优 ...

  5. BZOJ 1898: [Zjoi2004]Swamp 沼泽鳄鱼( dp + 矩阵快速幂 )

    ----------------------------------------------------------------------- #include<cstdio> #incl ...

  6. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  7. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  8. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  9. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

随机推荐

  1. Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

  2. A/B(扩展欧几里德)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. 飘逸的python - 一个最简单的服务器

    python拥有这种单独起一个服务器监听端口的能力,用标准库的wsgiref就行. from wsgiref.simple_server import make_server def simple_a ...

  4. 在ASP.NET中动态加载内容(用户控件和模板)

    在ASP.NET中动态加载内容(用户控件和模板) 要点: 1. 使用Page.ParseControl 2. 使用base.LoadControl 第一部分:加载模板 下 面是一个模板“<tab ...

  5. 界面调试工具Reveal的使用介绍

    Reveal 注: 此处介绍Reveal,其中大部分内容来自于唐巧的<iOS开发进阶>一书,以此说明. 如何使用Reveal进行模拟器调试,只需进行以下三个步骤即可. 1. 创建.lldb ...

  6. .html与.htm为网页后缀的区别

    有些人在做网页的时候会有疑问,到底是应该用.html还是.htm做网页后缀呢?.html和.htm有什么区别吗?在做网页时到底用哪一个好呢? 现在,我说一下我对这两个文件后缀的看法: 首先,要想使用后 ...

  7. NOIP2015前

    时间过得好快...明天就要出发去NOIP了...然后再过半年就要省选了....希望自己能取得好成绩吧... NOIP2015 bless all !

  8. 搭建zend framework1开发环境

    1.和常规开发大致相同,首先下载zend framework1,下载地址如下 http://www.zendframework.com/downloads/latest 挑选其中一个下载,我下载的是f ...

  9. javascript定义函数不同方式的区别

    学习javascript中遇到了这么一个问题,代码如下: var test = 'a'; function test() { alert('Hello World!'); } alert(test); ...

  10. cpu有哪些架构

    原文:http://blog.csdn.net/wyzxg/article/details/5027738 author:skatetime:2009/12/17 这几天在下载RPM包的时候,总会看见 ...