poj 3266 Cow School 分数规划
这个题目难度非常大,首先对于老师的一种方案,应用分数规划的一般做法,求出所有的c=t-rate*p,如果没有选择的c值中的最大值比选择了的c值中的最小值大,那么这个解是可以改进的。
那么问题就转化成了怎么求最小的c和最大的c。
t-rate*p 求这种类型的最值,并且rate是单调的,那么就可以考虑利用斜率优化的那种办法来维护决策点。
考虑两个决策点,得到ti-tj>rate(pi-pj) 但是这个pi pj的大小不能确定,我们知道可以利用斜率优化的问题不仅仅要rate单调,还需要pi 单调 这个时候我们需要利用题目中的条件,题目中保证了t/p单调,根据这个条件,可以推出求两种最值的时候都只有单调的p才是有可能成为决策点的。那么就可以按照斜率优化步骤来解题了。一个是用单调栈维护,另外一个利用单调队列维护。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=5e4+9;
double high[maxn],low[maxn];
long long sumt[maxn],sump[maxn];
struct D
{
long long t,p;
bool operator <(const D & xx) const
{
return t*xx.p>xx.t*p;
}
}test[maxn];
int que[maxn]; bool chk(int i,int j,int t,int s)
{
long long a=(test[i].t-test[j].t)*(test[t].p-test[s].p);
long long b=(test[t].t-test[s].t)*(test[i].p-test[j].p);
return a>b;
} bool chk2(int i,int j,long long t,long long p)
{
long long a=(test[i].t-test[j].t)*p;
long long b=t*(test[i].p-test[j].p);
return a>b;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=n;i++)
scanf("%lld %lld",&test[i].t,&test[i].p);
sort(test+1,test+1+n); for(int i=1;i<=n;i++)
{
sumt[i]=sumt[i-1]+test[i].t;
sump[i]=sump[i-1]+test[i].p;
} int front=1,end=0;
for(int i=1;i<=n;i++)
{
while(end>=front&&test[i].p>=test[que[end]].p)
end--;
while(end>front&&chk(que[end],i,que[end-1],que[end]))
end--;
que[++end]=i;
while(front<end&&chk2(que[front],que[front+1],sumt[i],sump[i])==1)
front++;
int u=que[front];
low[i]=test[u].t-(double)sumt[i]/sump[i]*test[u].p;
}
int top=0;
for(int i=n;i>=1;i--)
{
while(top>0&&test[i].p<=test[que[top]].p)
top--;
while(top>1&&chk(i,que[top],que[top],que[top-1]))
top--;
que[++top]=i;
while(top>1&&chk2(que[top],que[top-1],sumt[i-1],sump[i-1])==0)
top--;
int u=que[top];
high[i]=test[u].t-(double)sumt[i-1]/sump[i-1]*test[u].p;
}
int ans=0;
for(int i=1;i<n;i++)
if(high[i+1]>low[i])
ans++;
cout<<ans<<endl;
for(int i=n-1;i>=1;i--)
if(high[i+1]>low[i])
printf("%d\n",n-i);
}
return 0;
}
poj 3266 Cow School 分数规划的更多相关文章
- Poj 2018 Best Cow Fences(分数规划+DP&&斜率优化)
Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Description Farmer John's farm consists of a ...
- POJ 2728 JZYZOJ 1636 分数规划 最小生成树 二分 prim
http://172.20.6.3/Problem_Show.asp?id=1636 复习了prim,分数规划大概就是把一个求最小值或最大值的分式移项变成一个可二分求解的式子. #include< ...
- poj 3621 0/1分数规划求最优比率生成环
思路:以val[u]-ans*edge[i].len最为边权,判断是否有正环存在,若有,那么就是ans小了.否则就是大了. 在spfa判环时,先将所有点进队列. #include<iostrea ...
- poj Dropping tests 01分数规划---Dinkelbach算法
果然比二分要快将近一倍.63MS.二分94MS. #include <iostream> #include <algorithm> #include <cstdio> ...
- POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ 2728 Desert King (01分数规划)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions:29775 Accepted: 8192 Descr ...
- POJ 2976 Dropping tests(01分数规划)
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions:17069 Accepted: 5925 De ...
- P2877 [USACO07JAN]牛校Cow School(01分数规划+决策单调性分治)
P2877 [USACO07JAN]牛校Cow School 01分数规划是啥(转) 决策单调性分治,可以解决(不限于)一些你知道要用斜率优化却不会写的问题 怎么证明?可以暴力打表 我们用$ask(l ...
- POJ 2728 Desert King(最优比率生成树 01分数规划)
http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...
随机推荐
- IT第二天 - JAVA环境的配置、Hello的编写
IT第二天 上午 HTML的一些讲解 下午 JDK的安配置 JAVA语法的注意事项 Hello的编写 晚上 作业 对println的应用 笔记 1.Classpath环境变量的配置:因为DOS对于文件 ...
- 用JLabel显示时间-- JAVA初学者遇到的一个困难
问题:用一个JLabe,显示秒数,每过一秒数字自动减少1 问题看似很简单,但对初学JAVA的我来说,还真费了一点劲. 首先是如何即时,可以采用线程的方法: try { Thread.sleep(100 ...
- 首届全球RTB(实时竞价)广告DSP算法大赛
首届全球RTB(实时竞价)广告DSP算法大赛 竞赛指南 RTB (Real Time Bidding, 实时竞价) 是近年来计算广告领域最激动人心的进展之一. 它增加了展示广告的透明度与效率, ...
- paip.php-gtk 桌面程序 helloworld总结
paip.php-gtk 桌面程序 helloworld总结 作者Attilax , EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:http://blog.cs ...
- iOS/Xcode异常:reason = “The model used to open the store is incompatible with the one used to create the store”
reason=The model used to open the store is incompatible with the one used to create the store 出现上述异常 ...
- hdu 4737
题目链接 直接暴力,或运算只会越来越大 #include <cstdio> #include <cstring> using namespace std; #define N ...
- switch语句:适用于一个条件有多个分支的情况---分支语句
例1: 客服选择功能,然后按按键 Console.WriteLine("查花费请按1,查余额请按2,查流量请按3,办理业务请按4,宽带请按5,人工服务请按6,集团业务请按7"); ...
- ThinkPHP - CURD增删改查操作
public function show(){ //使用model模型 //1.可以使用 $user = new Model('User'); //2.可以使用 $user = M('User'); ...
- [Swust OJ 746]--点在线上(线段树解法及巧解)
题目链接:http://acm.swust.edu.cn/problem/746/ Time limit(ms): 1000 Memory limit(kb): 65535 fate是一个数学大牛 ...
- BZOJ 1798: [Ahoi2009]Seq 维护序列seq( 线段树 )
线段树.. 打个 mul , add 的标记就好了.. 这个速度好像还挺快的...( 相比我其他代码 = = ) 好像是#35.. ---------------------------------- ...