首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了。算个可重集的排列数和组合数就行了...要写高精..

---------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 1009;
 
int deg[maxn], N, m, c;
int p[maxn], pn;
int cnt[maxn];
bool F[maxn];
 
void Init() {
m = 0;
scanf("%d", &N);
for(int i = 0; i < N; i++) {
scanf("%d", deg + i);
if(~deg[i])
m++, c += deg[i] - 1;
}
pn = 0;
memset(F, 0, sizeof F);
for(int i = 2; i <= N; i++) {
if(!F[i])
p[pn++] = i;
for(int j = 0; j < pn && i * p[j] <= N; j++) {
F[i * p[j]] = true;
if(i % p[j] == 0) break;
}
}
}
 
void Work(int V, bool t) {
for(int x = 2; x <= V; x++ )
for(int i = 0, v = x; i < pn && v != 1; i++)
for(; v % p[i] == 0; v /= p[i], t ? cnt[i]++ : cnt[i]--);
}
 
struct BigInt {
static const int MAXN = 10000;
static const int BASE = 10000;
static const int WID = 4;
int s[MAXN], n;
BigInt(int _n = 0) : n(_n) {
memset(s, 0, sizeof s);
}
BigInt operator = (int num) {
for(; num; s[n++] = num % BASE, num /= BASE);
return *this;
}
BigInt operator *= (const int &x) {
for(int i = 0; i < n; i++) s[i] *= x;
for(int i = 0; i < n; i++) if(s[i] >= BASE) {
s[i + 1] += s[i] / BASE;
s[i] %= BASE;
}
if(s[n]) n++;
return *this;
}
void WRITE() {
int buf[8], t;
for(int i = n; i--; ) {
t = 0;
for(int v = s[i]; v; buf[t++] = v % 10, v /= 10);
if(i + 1 != n) {
for(int j = WID - t; j; j--)
putchar('0');
}
while(t--)
putchar(buf[t] + '0');
}
}
};
 
int main() {
Init();
if(c > N - 2) {
puts("0"); return 0;
}
memset(cnt, 0, sizeof cnt);
for(int i = 0, v = N - m; i < pn && v != 1; i++)
for(; v % p[i] == 0; v /= p[i], cnt[i]++);
for(int i = 0, t = N - 2 - c; i < pn; i++) 
if(cnt[i] > 0) cnt[i] *= t;
Work(N - 2, 1);
Work(N - c - 2, 0);
for(int i = 0; i < N; i++)
if(~deg[i]) Work(deg[i] - 1, 0);
BigInt ans; ans = 1;
for(int i = 0; i < pn; i++)
for(; cnt[i]--; ans *= p[i]);
ans.WRITE();
return 0;
}

---------------------------------------------------------------------

1005: [HNOI2008]明明的烦恼

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 3412  Solved: 1358
[Submit][Status][Discuss]

Description

自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树?

Input

第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

两棵树分别为1-2-3;1-3-2

Source

BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )的更多相关文章

  1. BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)

    题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...

  2. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  3. BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合

    1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...

  4. BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数

    1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  6. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  7. BZOJ 1005: [HNOI2008]明明的烦恼(高精度+prufer序)

    传送门 解题思路 看到度数和生成树个树,可以想到\(prufer\)序,而一张规定度数的图的生成树个数为\(\frac{(n-2)!}{\prod\limits_{i=1}^n(d(i)-1)!}\) ...

  8. BZOJ.1005.[HNOI2008]明明的烦恼(Prufer 高精 排列组合)

    题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...

  9. BZOJ 1005: [HNOI2008]明明的烦恼(prufer数列)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 题意: Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标 ...

随机推荐

  1. Android_Intent意图详解

    本博文为子墨原创,转载请注明出处! http://blog.csdn.net/zimo2013/article/details/11863857 1.Intent作用 Intent是一个将要执行的动作 ...

  2. golang之匿名函数

    package main import "fmt" /* squares返回一个匿名函数 * 该匿名函数每次调用返回下一个数的平方 * func name(parameter-li ...

  3. MFC知识点整理

    1. 在使用VS2010生成基于MFC的应用程序时,在“Visual C++”下选择“MFC”,对话框中间区域会出现三个选项:MFC ActiveX Control.MFC Application和M ...

  4. BFC / hasLayout

    BFC - block formatting context 1.float的值不能为none 2.overflow的值不能为visible 3.display的值为table-cell,table- ...

  5. Oracle死锁。

    oracle数据库死锁一般情况下在oracle数据库中不会.但是在程序中可以开启事物没有提交,但是程序报错我们就关了程序在重新调试.但是我们程序总是在执行 comm.ExecuteNonQuery() ...

  6. AdventureWorks2008 数据库安装

    我使用的操作系统是 win 8.1,由于对早前安装的sql server 2008的兼容性不太好,要安装对应的service pack来解决一下这个问题. 如何使用 SQL Server 在 Wind ...

  7. 微信支付 v 3.3.6

    文字说明: 前提:注册.申请服务号,开通微信支付. 涉及到的参数:AppId.AppSecret.原始ID(自动回复).mch_id(商户号).Key(商户密钥:自己设定.) 统一规范: 要求 认证方 ...

  8. 全局通知Notification

    Notification 全局通知 关于全局通知的个人理解: 即有一个发射消息的,在整个应用中任何对象都可以接受这个消息 但是无论是哪个对象接受消息,都要在这个对象结束时移除消息 简单的说 就是给对象 ...

  9. iOS内购的订单对应和补单

    内购的关键类: 1.SKPayment(SKMutablePayment可将自己的参数一对一与苹果产生的payment对应起来) 2.TransactionObserver:交易状态更新时执行此方法, ...

  10. ASP.net MVC 无法初始化 ASP.NET Simple Membership 数据库

    1.错误信息 解决办法 1 更改Web.config的连接字符串 <connectionStrings> <add name="DefaultConnection" ...