#常用Transformation(即转换,延迟加载)
#通过并行化scala集合创建RDD
val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))
#查看该rdd的分区数量
rdd1.partitions.length
 
 
val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10))
val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_*2).sortBy(x=>x,true)
val rdd3 = rdd2.filter(_>10)
val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_*2).sortBy(x=>x+"",true)
val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(_*2).sortBy(x=>x.toString,true)
 
 
val rdd4 = sc.parallelize(Array("a b c", "d e f", "h i j"))
rdd4.flatMap(_.split(' ')).collect
 
val rdd5 = sc.parallelize(List(List("a b c", "a b b"),List("e f g", "a f g"), List("h i j", "a a b")))
 
 
List("a b c", "a b b") =List("a","b",))
 
 
 
 
 
 
rdd5.flatMap(_.flatMap(_.split(" "))).collect
=============================================================
#union求并集,注意类型要一致
val rdd6 = sc.parallelize(List(5,6,4,7))
val rdd7 = sc.parallelize(List(1,2,3,4))
 
val rdd8 = rdd6.union(rdd7)
//Array[Int] = Array(5, 6, 4, 7, 1, 2, 3, 4)
 
rdd8.distinct.sortBy(x=>x).collect
//Array[Int] = Array(1, 2, 3, 4, 5, 6, 7)
 
#intersection求交集
val rdd9 = rdd6.intersection(rdd7)
// Array[Int] = Array(4)
=============================================================
val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 2), ("kitty", 3)))
val rdd2 = sc.parallelize(List(("jerry", 9), ("tom", 8), ("shuke", 7)))
 
#join(内联)
val rdd3 = rdd1.join(rdd2)
//Array[(String, (Int, Int))] = Array((tom,(1,8)), (jerry,(2,9)))
 
 

#leftOuterJoin(左联)

 
val rdd3 = rdd1.leftOuterJoin(rdd2)
//Array[(String, (Int, Option[Int]))] = Array((tom,(1,Some(8))), (jerry,(2,Some(9))), (kitty,(3,None)))
 
 

#rightOuterJoin(右连)

 
val rdd3 = rdd1.rightOuterJoin(rdd2)
//Array[(String, (Option[Int], Int))] = Array((tom,(Some(1),8)), (jerry,(Some(2),9)), (shuke,(None,7)))
 
#groupByKey
val rdd3 = rdd1 union rdd2
// Array[(String, Int)] = Array((tom,1), (jerry,2), (kitty,3), (jerry,9), (tom,8), (shuke,7))
 
rdd3.groupByKey
// Array[(String, Iterable[Int])] = Array((tom,CompactBuffer(1, 8)), (jerry,CompactBuffer(2, 9)), (shuke,CompactBuffer(7)), (kitty,CompactBuffer(3)))
 
rdd3.groupByKey.map(x=>(x._1,x._2.sum))
//Array[(String, Int)] = Array((tom,9), (jerry,11), (shuke,7), (kitty,3))
 
#WordCount
sc.textFile("/root/words.txt").flatMap(x=>x.split(" ")).map((_,1)).reduceByKey(_+_).sortBy(_._2,false).collect
sc.textFile("/root/words.txt").flatMap(x=>x.split(" ")).map((_,1)).groupByKey.map(t=>(t._1, t._2.sum)).collect
// Array[(String, Int)] = Array((hello,5), (tom,2), (world,2), (myson,1), (ketty,1), (hell,1))
 
#cogroup
val rdd1 = sc.parallelize(List(("tom", 1), ("tom", 2), ("jerry", 3), ("kitty", 2)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))
 
val rdd3 = rdd1.cogroup(rdd2)
//Array[(String, (Iterable[Int], Iterable[Int]))] = Array((tom,(CompactBuffer(1, 2),CompactBuffer(1))), (jerry,(CompactBuffer(3),CompactBuffer(2))), (shuke,(CompactBuffer(),CompactBuffer(2))), (kitty,(CompactBuffer(2),CompactBuffer())))
 
val rdd4 = rdd3.map(t=>(t._1, t._2._1.sum + t._2._2.sum))
// Array[(String, Int)] = Array((tom,4), (jerry,5), (shuke,2), (kitty,2))
 
#cartesian笛卡尔积
val rdd1 = sc.parallelize(List("tom", "jerry"))
val rdd2 = sc.parallelize(List("tom", "kitty", "shuke"))
val rdd3 = rdd1.cartesian(rdd2)
// Array[(String, String)] = Array((tom,tom), (tom,kitty), (tom,shuke), (jerry,tom), (jerry,kitty), (jerry,shuke))
 
###################################################################################################
 
#spark action
val rdd1 = sc.parallelize(List(1,2,3,4,5), 2)
 
#collect
rdd1.collect
// Array[Int] = Array(1, 2, 3, 4, 5)
 
#reduce
val rdd2 = rdd1.reduce(_+_)
//rdd2: Int = 15
 
#count
rdd1.count
//res7: Long = 5
 
#top(从大到小排序,然后去头部两个)
rdd1.top(2)
//res8: Array[Int] = Array(5, 4)
 
#take(取两个元素)
rdd1.take(2)
// Array[Int] = Array(1, 2)
 
 
#first(similer to take(1))
rdd1.first
// Int = 1
 
#takeOrdered
rdd1.takeOrdered(3)
//Array[Int] = Array(1, 2, 3)
#
 
map(func)                                                   Return a new distributed dataset formed by passing each element of the source through a function func.
filter(func)                                               Return a new dataset formed by selecting those elements of the source on which func returns true.
flatMap(func)                                               Similar to map, but each input item can be mapped to 0 or more output items (so func should return a Seq rather than a single item).
mapPartitions(func)                                           Similar to map, but runs separately on each partition (block) of the RDD, so func must be of type Iterator<T> => Iterator<U> when running on an RDD of type T.
mapPartitionsWithIndex(func)                               Similar to mapPartitions, but also provides func with an integer value representing the index of the partition, so func must be of type (Int, Iterator<T>) => Iterator<U> when running on an RDD of type T.
sample(withReplacement, fraction, seed)                    Sample a fraction fraction of the data, with or without replacement, using a given random number generator seed.
union(otherDataset)                                        Return a new dataset that contains the union of the elements in the source dataset and the argument.
intersection(otherDataset)                                Return a new RDD that contains the intersection of elements in the source dataset and the argument.
distinct([numTasks]))                                    Return a new dataset that contains the distinct elements of the source dataset.
groupByKey([numTasks])                                    When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs. 
reduceByKey(func, [numTasks])                            When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for each key are aggregated using the given reduce function func, which must be of type (V,V) => V. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument.
aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])    When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type, while avoiding unnecessary allocations. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument.
sortByKey([ascending], [numTasks])                        When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument.
join(otherDataset, [numTasks])                            When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer joins are supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin.
cogroup(otherDataset, [numTasks])                        When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (Iterable<V>, Iterable<W>)) tuples. This operation is also called groupWith.
cartesian(otherDataset)                                    When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements).
pipe(command, [envVars])                                Pipe each partition of the RDD through a shell command, e.g. a Perl or bash script. RDD elements are written to the process's stdin and lines output to its stdout are returned as an RDD of strings.
coalesce(numPartitions)                                    Decrease the number of partitions in the RDD to numPartitions. Useful for running operations more efficiently after filtering down a large dataset.
repartition(numPartitions)                                Reshuffle the data in the RDD randomly to create either more or fewer partitions and balance it across them. This always shuffles all data over the network.
repartitionAndSortWithinPartitions(partitioner)            Repartition the RDD according to the given partitioner and, within each resulting partition, sort records by their keys. This is more efficient than calling repartition and then sorting within each partition because it can push the sorting down into the shuffle machinery.
 
 (K,(Iterable<V>,Iterable<W>))
 

Spark 初级算子的更多相关文章

  1. Spark RDD概念学习系列之Spark的算子的分类(十一)

    Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformat ...

  2. Spark RDD概念学习系列之Spark的算子的作用(十四)

    Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算 ...

  3. Spark操作算子本质-RDD的容错

    Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群 ...

  4. Spark RDD算子介绍

    Spark学习笔记总结 01. Spark基础 1. 介绍 Spark可以用于批处理.交互式查询(Spark SQL).实时流处理(Spark Streaming).机器学习(Spark MLlib) ...

  5. 列举spark所有算子

    一.RDD概述      1.什么是RDD           RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可 ...

  6. Spark常用算子-KeyValue数据类型的算子

    package com.test; import java.util.ArrayList; import java.util.List; import java.util.Map; import or ...

  7. Spark常用算子-value数据类型的算子

    package com.test; import java.util.ArrayList; import java.util.Arrays; import java.util.Iterator; im ...

  8. spark常用算子总结

    算子分为value-transform, key-value-transform, action三种.f是输入给算子的函数,比如lambda x: x**2 常用算子: keys: 取pair rdd ...

  9. spark过滤算子+StringIndexer算子出发的一个逻辑bug

    问题描述: 在一段spark机器学习的程序中,同时用到了Filter算子和StringIndexer算子,其中StringIndexer在前,filter在后,并且filter是对stringinde ...

随机推荐

  1. DOS环境下MySQL使用及不同字符集之间的转换

    mysql -uroot -p; show databses; 创建数据库\c; create database webclass; use webclass; 创建表并设置好各字段的属性\c cre ...

  2. RecyclerView 详解

    概述 RecyclerView出现已经有一段时间了,相信大家肯定不陌生了,大家可以通过导入support-v7对其进行使用.  据官方的介绍,该控件用于在有限的窗口中展示大量数据集,其实这样功能的控件 ...

  3. OD: Register, Stack Frame, Function Reference

    几个重要的 Win32 寄存器 EIP 指令寄存器(Extended Instruction Pointer) 存放一个指针,指向下一条等待执行的指令地址 ESP 栈指针寄存器(Extended St ...

  4. OpenSuse如何共享目录

    如何在SUSE Linux 建立共享文件夹 1./etc/samba/smb.conf 打开配置文档 2.在文档的最后加上共享的文档夹/opt,下面是示例. nte143:/etc/samba # v ...

  5. 关于winform主题IrisSkin2的编写

    第一步:首先引用IrisSkin2.dll. 第二步自定义类: /// <summary> /// 窗体主题边界类 /// </summary> public class Fo ...

  6. 刚安装的ios app 会带有教你功能使用的特效说明 做法

    这个功能使用说明是每次app更新或者第一次安装都需要显示的.你可以给每个需要显示的说明界面设置一个BOOL变量控制它是否显示.在applicationDidFinishLaunching的函数中判断a ...

  7. DOM 添加 / 更新 / 删除 XML (CURD)

    获得Document /**     * 获取文档     * 1.获得实例工厂     * 2.获得解析器     * 3.获得document     */ 添加结点 /**     * 1.获得 ...

  8. mysql定时执行及延时执行,实现类似sql server waitfor功能

    熟悉SQL Server的人都知道,它有一个很有用的功能,waitfor time和waitfor delay,前者表示在某个时间执行,后者表示等待多长时间执行.在我们测试功能和定时执行的时候特别有用 ...

  9. Backbone的id

    id 在model.attributes中,需要用户自行定义,可不定义,获取方法:model.get('id') cid collection中每个model都有的属性,由backbone自动生成,获 ...

  10. Python新手学习基础之运算符——算术运算符

    算术运算符 之前文章在介绍变量类型的时候,其实已经用过了很多算术符,比如+.-.*././/.** 等,除此之外,还有一个符号是之前内容没提到的,就是 % ,用来返回除法余数的运算符号. 假设有变量x ...