本来是要调研 Latent Dirichlet Allocation 的那个 LDA 的, 没想到查到很多关于 Linear Discriminant Analysis 这个 LDA 的资料。初步看了看,觉得数学味挺浓,一时引起了很大的兴趣;再看看,就有整理一份资料的冲动了。网上查到的相关文章大都写得不是很详细,而且在概念和记号等方面也比较混乱,因此,在整理本文时,我有意识地牵了一根主线,想让读者读起来有循序渐进的感觉,记号上也力求规范和统一。期间参考了若干文献,以及一些优秀的博客,如 JerryLead、LeftNotEasy、webdancer、xiaodongrush 等的博文,在这里对他们的辛勤写作和无私分享表示感谢。文中的数学推导过程写得比较细,方便有需求的读者参考。此外,文中还通过加注的形式放入了一些自己的理解。 当由于水平有限,错误遗漏之处在所难免, 希望读者朋友可以指出,也欢迎交流。

目录


第 1 节  预备知识

1.1 分类问题的描述

1.2 拉格朗日乘子法

第 2 节  Two-classes 情形的数学推导

2.1 基本思想

2.2 目标函数

2.3 极值求解

2.4 阀值选取

第 3 节  推广到 Multi-classes 情形

3.1 降维问题的描述

3.2 目标函数与极值求解

3.3 降维幅度

第 4 节  其他几个相关问题

若需要本文完整的 PDF 文档,请点击《线性判别分析(LDA)浅析》进行下载!

相关链接

1.  JerryLead 的博文 《线性判别分析(Linear Discriminant Analysis)(一)》

2.  JerryLead 的博文 《线性判别分析(Linear Discriminant Analysis)(二)》

3.  LeftNotEasy 的博文 《机器学习中的数学(4)-线性判别分析(LDA),主成分分析(PCA)》

4.  webdancer 的博文 《LDA-linear discriminant analysis》

5.  xiaodongrush 的博文 《线性判别式分析-LDA-Linear Discriminant Analysis》

6.  peghoty 的博文《关于协方差矩阵的理解》

7.  peghoty 的博文《UFLDL教程学习笔记(四)主成分分析》

作者: peghoty

出处: http://blog.csdn.net/itplus/article/details/12038653

欢迎转载/分享, 但请务必声明文章出处.

LDA-线性判别分析(四)的更多相关文章

  1. PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质

    机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...

  2. LDA线性判别分析原理及python应用(葡萄酒案例分析)

    目录 线性判别分析(LDA)数据降维及案例实战 一.LDA是什么 二.计算散布矩阵 三.线性判别式及特征选择 四.样本数据降维投影 五.完整代码 结语 一.LDA是什么 LDA概念及与PCA区别 LD ...

  3. LDA线性判别分析

    LDA线性判别分析 给定训练集,设法将样例投影到一条直线上,使得同类样例的投影点尽可能的近,异类样例点尽可能的远,对新样本进行分类的时候,将新样本同样的投影,再根据投影得到的位置进行判断,这个新样本的 ...

  4. LDA线性判别分析(转)

    线性判别分析LDA详解 1 Linear Discriminant Analysis    相较于FLD(Fisher Linear Decriminant),LDA假设:1.样本数据服从正态分布,2 ...

  5. LDA 线性判别分析

    LDA, Linear Discriminant Analysis,线性判别分析.注意与LDA(Latent Dirichlet Allocation,主题生成模型)的区别. 1.引入 上文介绍的PC ...

  6. LDA(线性判别分析,Python实现)

    源代码: #-*- coding: UTF-8 -*- from numpy import * import numpy def lda(c1,c2): #c1 第一类样本,每行是一个样本 #c2 第 ...

  7. 机器学习理论基础学习3.2--- Linear classification 线性分类之线性判别分析(LDA)

    在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),是一种处理文档的主题 ...

  8. 运用sklearn进行线性判别分析(LDA)代码实现

    基于sklearn的线性判别分析(LDA)代码实现 一.前言及回顾 本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA).在上一篇LDA线性判别分析原理及python应用(葡 ...

  9. LDA(Linear discriminate analysis)线性判别分析

    LDA 线性判别分析与Fisher算法完全不同 LDA是基于最小错误贝叶斯决策规则的. 在EMG肌电信号分析中,... 未完待续:.....

  10. 线性判别分析 LDA

    点到判决面的距离 点\(x_0\)到决策面\(g(x)= w^Tx+w_0\)的距离:\(r={g(x)\over \|w\|}\) 广义线性判别函数 因任何非线性函数都可以通过级数展开转化为多项式函 ...

随机推荐

  1. 解决如何让AsyncTask终止操作

    受到这个的启发终于结局了如何在AsyncTask运行中终止其操作. 单纯的onCancelled(true)是不行的 下面把代码贴出来~实现了登陆功能. AsyncTask简介,它使创建需要与用户界面 ...

  2. Android下Affinities和Task

    源文链接:http://appmem.com/archives/405 本文参考了官方Dev Guide文档,简单介绍Android下的affinities和任务(task). 1.Activity和 ...

  3. Web项目去掉Js文件红叉

    项目用到jquery,但将Jquery拷进去后,js文件有个红叉,看上去非常不爽.如下图: 解决方法: 1.找到项目下的.project文件 2.去掉Javascript验证 <?xml ver ...

  4. avalon学习笔记一 列表及条件过滤

    好长时间都没有更新博客了,不是因为没有学习新的东西,而是到了新的单位每天玩命加班实在是太累了!经过一年的努力吧,终于可以轻松一下了.废话少说,直接干货吧! 由于是学习阶段,就直接拿了公司的二级页面做了 ...

  5. BootStrap-validator 使用记录(JAVA SpringMVC实现)

    BootStrap 是一个强大的前面框架,它用优雅的方式解决了网页问题.最近正在使用其开发网站的表单验证,一点体会记录如下: 注:本文中借鉴了博客Franson 的文章<使用bootstrapv ...

  6. 全世界最详细的图形化VMware中linux环境下oracle安装(一)【weber出品必属精品】

    安装流程:前期准备工作--->安装ORACLE软件--->安装升级补丁--->安装odbc创建数据库--->安装监听器--->安装EM <前期准备工作> 安装 ...

  7. 0301——UItableView

    - (void)viewDidLoad { [super viewDidLoad]; self.myTableView = [[UITableView alloc]initWithFrame:CGRe ...

  8. JasperReport使用心得

    1. JasperReport 报表文件视图化生成工具iReport. iReport做为一个生成JasperReport的视图工具,和我们是使用的大多数报表创建工具没有太大的差别,都是拖控件,搭出报 ...

  9. 编译XSIP过程中环境配置

    昨天在编译XSip的过程中,有很多问题首先是出现了很多的error C1083. 然后到XSIP自己的文件夹中,也找不到对应的.h文件. 上网查阅后发现应该是缺少了对应的头文件的路径.   于是到可以 ...

  10. Trident内核中取验证码图片的几种方法

    程序中用了IE的内核,想取出网站中的验证码图片,单独显示出来,调研了以下几路方法 1.枚举所有缓存文件,进行处理,找到想要的,核心代码 )//这段代码可以枚举所有缓存资源,然后对应做处理 { LPIN ...