转载http://www.cnblogs.com/fangyukuan/archive/2010/09/21/1832364.html

各个容器有很多的相似性。先学好一个,其它的就好办了。先从基础开始。

先看看他们的分类吧

  • 标准STL序列容器:vector、string、deque和list。
  • 标准STL关联容器:set、multiset、map和multimap。
  • 非标准序列容器slist和rope。slist是一个单向链表,rope本质上是一个重型字符串。
  • 非标准关联容器hash_set、hash_multiset、hash_map和hash_multimap。
    (各容器成员对比见:【STL】各容器成员对比表

先看看list。

list

STL中的list就是一双向链表,可高效地进行插入删除元素。

list不支持随机访问。所以没有 at(pos)和operator[]。

list对象list1, list2分别有元素list1(1,2,3),list2(4,5,6)。list<int>::iterator it;

list成员

说明

constructor

构造函数

destructor

析构函数

operator=

赋值重载运算符

assign

分配值

front

返回第一个元素的引用

back

返回最后一元素的引用

begin

返回第一个元素的指针(iterator)

end

返回最后一个元素的下一位置的指针

rbegin

返回链表最后一元素的后向指针(reverse_iterator or const)

rend

返回链表第一元素的下一位置的后向指针

push_back

增加一元素到链表尾

push_front

增加一元素到链表头

pop_back

pop_back()删除链表尾的一个元素

pop_front

删除链表头的一元素

clear

删除所有元素

erase

删除一个元素或一个区域的元素(两个重载)

remove

删除链表中匹配值的元素(匹配元素全部删除)

remove_if

删除条件满足的元素(遍历一次链表),参数为自定义的回调函数

empty

判断是否链表为空

max_size

返回链表最大可能长度

size

返回链表中元素个数

resize

重新定义链表长度(两重载函数)

reverse

反转链表

sort

对链表排序,默认升序

merge

合并两个有序链表并使之有序

splice

对两个链表进行结合(三个重载函数) 结合后第二个链表清空

insert

在指定位置插入一个或多个元素(三个重载函数)

swap

交换两个链表(两个重载)

unique

删除相邻重复元素 

1.list构造函数

list<int> L0;       // 空链表

list<int> L1(9);   // 建一个含个默认值是的元素的链表

list<int> L2(5,1); // 建一个含个元素的链表,值都是

list<int> L3(L2);  // 建一个L2的copy链表

list<int> L4(L0.begin(), L0.end());//建一个含L0一个区域的元素

2. assign()分配值,有两个重载

L1.assign(4,3);                                // L1(3,3,3,3)

L1.assign(++list1.beging(), list2.end());   // L1(2,3)

3.operator= 赋值重载运算符

L1 = list1;   // L1(1,2,3)

4.   front()返回第一个元素的引用

int nRet = list1.front()    // nRet = 1

5.  back()返回最后一元素的引用

int nRet = list1.back()     // nRet = 3

6.  begin()返回第一个元素的指针(iterator)

it = list1.begin();    // *it = 1

7.   end()返回最后一个元素的下一位置的指针(list为空时end()=begin())

it = list1.end();

--it;                       // *it = 3

8.rbegin()返回链表最后一元素的后向指针(reverse_iterator or const)

list<int>::reverse_iterator it = list1.rbegin();  // *it = 3

9.   rend()返回链表第一元素的下一位置的后向指针

list<int>::reverse_iterator it = list1.rend(); // *(--riter) = 1

10.push_back()增加一元素到链表尾

list1.push_back(4)       // list1(1,2,3,4)

11. push_front()增加一元素到链表头

list1.push_front(4)      // list1(4,1,2,3)

12. pop_back()删除链表尾的一个元素

list1.pop_back()          // list1(1,2)

13.pop_front()删除链表头的一元素

list1.pop_front()          // list1(2,3)

14.clear()删除所有元素

list1.clear();   // list1空了,list1.size() =0

15.erase()删除一个元素一个区域的元素(两个重载函数)

list1.erase(list1.begin());                // list1(2,3)

list1.erase(++list1.begin(),list1.end()); // list1(1)

16.    remove()删除链表中匹配值的元素(匹配元素全部删除)

list对象L1(4,3,5,1,4)

L1.remove(4);               // L1(3,5,1);

17.remove_if()删除条件满足的元素(遍历一次链表),参数为自定义的回调函数

// 小于2的值删除

bool myFun(const int& value) { return (value < 2); }

list1.remove_if(myFun);    // list1(3) 

18.empty()判断是否链表为空

bool bRet = L1.empty(); //若L1为空,bRet = true,否则bRet = false。

19.max_size()返回链表最大可能长度

list<int>::size_type nMax = list1.max_size();// nMax = 1073741823

20.size()返回链表中元素个数

list<int>::size_type nRet = list1.size();      // nRet = 3

21.resize()重新定义链表长度(两重载函数)

list1.resize(5)    // list1 (1,2,3,0,0)用默认值填补

list1.resize(5,4)    // list1 (1,2,3,4,4)用指定值填补

22.reverse()反转链表:

list1.reverse();     // list1(3,2,1)

23.sort()对链表排序,默认升序(可自定义回调函数)

list对象L1(4,3,5,1,4)

 

L1.sort();                 // L1(1,3,4,4,5)

L1.sort(greater<int>()); // L1(5,4,4,3,1)

24.merge()合并两个有序链表并使之有序

// 升序

list1.merge(list2);          // list1(1,2,3,4,5,6) list2现为空

// 降序

L1(3,2,1), L2(6,5,4)

L1.merge(L2, greater<int>()); // list1(6,5,4,3,2,1) list2现为空

25.splice()对两个链表进行结合(三个重载函数) 结合后第二个链表清空

list1.splice(++list1.begin(),list2);

// list1(1,4,5,6,2,3) list2为空

list1.splice(++list1.begin(),list2,list2.begin());

// list1(1,4,2,3); list2(5,6)

list1.splice(++list1.begin(),list2,++list2.begin(),list2.end());

//list1(1,5,6,2,3); list2(4)

26.insert()在指定位置插入一个或多个元素(三个重载函数)

list1.insert(++list1.begin(),9);  // list1(1,9,2,3)

list1.insert(list1.begin(),2,9);  // list1(9,9,1,2,3);

list1.insert(list1.begin(),list2.begin(),--list2.end());//list1(4,5,1,2,3);

27.swap()交换两个链表(两个重载)

list1.swap(list2);   // list1(4,5,6) list2(1,2,3)

28. unique()删除相邻重复元素

L1(1,1,4,3,5,1)

L1.unique();         // L1(1,4,3,5,1)

bool same_integral_part (double first, double second)

{ return ( int(first)==int(second) ); }

L1.unique(same_integral_part);

例子:

 
// -------------------------------------------------------------------------
// 文件名 : list1.cpp
// 创建者 : 方煜宽
//  邮箱 : fangyukuan@gmail.com
// 创建时间 : 2010-9-19 15:58
// 功能描述 : STL中的list就是一双向链表,可高效地进行插入删除元素。
//
// -------------------------------------------------------------------------
#include "stdafx.h"
#include <iostream>
#include <list>
using namespace std; list<int> g_list1;
list<int> g_list2; ////////////////////////////////////////////////////////////////////////// // 初始化全局链表
void InitList()
{
// push_back()增加一元素到链表尾
g_list1.push_back(1);
g_list1.push_back(2);
g_list1.push_back(3); // push_front()增加一元素到链表头
g_list2.push_front(6);
g_list2.push_front(5);
g_list2.push_front(4);
} // 输出一个链表
void ShowList(list<int>& listTemp)
{
// size()返回链表中元素个数
cout << listTemp.size() << endl; for (list<int>::iterator it = listTemp.begin(); it != listTemp.end(); ++it)
{
cout << *it << ' ';
}
cout << endl;
} ////////////////////////////////////////////////////////////////////////// // 构造函数,空链表
void constructor_test0()
{
list<int> listTemp;
cout << listTemp.size() << endl;
} // 构造函数,建一个含三个默认值是0的元素的链表
void constructor_test1()
{
list<int> listTemp(3);
ShowList(listTemp);
} // 构造函数,建一个含五个元素的链表,值都是1
void constructor_test2()
{
list<int> listTemp(5, 1);
ShowList(listTemp);
} // 构造函数,建一个g_list1的copy链表
void constructor_test3()
{
list<int> listTemp(g_list1);
ShowList(listTemp);
} // 构造函数,listTemp含g_list1一个区域的元素[_First, _Last)
void constructor_test4()
{
list<int> listTemp(g_list1.begin(), g_list1.end());
ShowList(listTemp);
} // assign()分配值,有两个重载
// template <class InputIterator>
// void assign ( InputIterator first, InputIterator last );
// void assign ( size_type n, const T& u );
void assign_test()
{
list<int> listTemp(5, 1);
ShowList(listTemp); listTemp.assign(4, 3);
ShowList(listTemp); listTemp.assign(++g_list1.begin(), g_list1.end());
ShowList(listTemp);
} // operator=
void operator_equality_test()
{
g_list1 = g_list2;
ShowList(g_list1);
ShowList(g_list2);
} // front()返回第一个元素的引用
void front_test7()
{
cout << g_list1.front() << endl;
} // back()返回最后一元素的引用
void back_test()
{
cout << g_list1.back() << endl;
} // begin()返回第一个元素的指针(iterator)
void begin_test()
{
list<int>::iterator it1 = g_list1.begin();
cout << *++it1 << endl; list<int>::const_iterator it2 = g_list1.begin();
it2++;
// (*it2)++; // *it2 为const 不用修改
cout << *it2 << endl; } // end()返回 [最后一个元素的下一位置的指针] (list为空时end()= begin())
void end_test()
{
list<int>::iterator it = g_list1.end(); // 注意是:最后一个元素的下一位置的指针
--it;
cout << *it << endl;
} // rbegin()返回链表最后一元素的后向指针
void rbegin_test()
{
list<int>::reverse_iterator it = g_list1.rbegin();
for (; it != g_list1.rend(); ++it)
{
cout << *it << ' ';
}
cout << endl;
} // rend()返回链表第一元素的下一位置的后向指针
void rend_test()
{
list<int>::reverse_iterator it = g_list1.rend();
--it;
cout << *it << endl;
} // push_back()增加一元素到链表尾
void push_back_test()
{
ShowList(g_list1);
g_list1.push_back(4);
ShowList(g_list1);
} // push_front()增加一元素到链表头
void push_front_test()
{
ShowList(g_list1);
g_list1.push_front(4);
ShowList(g_list1);
} // pop_back()删除链表尾的一个元素
void pop_back_test()
{
ShowList(g_list1);
cout << endl; g_list1.pop_back();
ShowList(g_list1); } // pop_front()删除链表头的一元素
void pop_front_test()
{
ShowList(g_list1);
cout << endl; g_list1.pop_front();
ShowList(g_list1);
} // clear()删除所有元素
void clear_test()
{
ShowList(g_list1);
g_list1.clear();
ShowList(g_list1);
} // erase()删除一个元素或一个区域的元素(两个重载函数)
void erase_test()
{
ShowList(g_list1);
g_list1.erase(g_list1.begin());
ShowList(g_list1); cout << endl; ShowList(g_list2);
g_list2.erase(++g_list2.begin(), g_list2.end());
ShowList(g_list2);
} // remove()删除链表中匹配值的元素(匹配元素全部删除)
void remove_test()
{
ShowList(g_list1);
g_list1.push_back(1);
ShowList(g_list1); g_list1.remove(1);
ShowList(g_list1);
} bool myFun(const int& value) { return (value < 2); }
// remove_if()删除条件满足的元素(会遍历一次链表)
void remove_if_test()
{
ShowList(g_list1);
g_list1.remove_if(myFun);
ShowList(g_list1);
} // empty()判断是否链表为空
void empty_test()
{
list<int> listTemp;
if (listTemp.empty())
cout << "listTemp为空" << endl;
else
cout << "listTemp不为空" << endl;
} // max_size()返回链表最大可能长度:1073741823
void max_size_test()
{
list<int>::size_type nMax = g_list1.max_size();
cout << nMax << endl;
} // resize()重新定义链表长度(两重载函数):
void resize_test()
{
ShowList(g_list1);
g_list1.resize(9); // 用默认值填补
ShowList(g_list1);
cout << endl; ShowList(g_list2);
g_list2.resize(9, 51); // 用指定值填补
ShowList(g_list2);
} // reverse()反转链表
void reverse_test()
{
ShowList(g_list1);
g_list1.reverse();
ShowList(g_list1);
} // sort()对链表排序,默认升序(两个重载函数)
void sort_test()
{
list<int> listTemp;
listTemp.push_back(9);
listTemp.push_back(3);
listTemp.push_back(5);
listTemp.push_back(1);
listTemp.push_back(4);
listTemp.push_back(3); ShowList(listTemp);
listTemp.sort();
ShowList(listTemp); listTemp.sort(greater<int>());
ShowList(listTemp);
} // merge()合并两个升序序链表并使之成为另一个升序.
void merge_test1()
{
list<int> listTemp2;
listTemp2.push_back(3);
listTemp2.push_back(4); list<int> listTemp3;
listTemp3.push_back(9);
listTemp3.push_back(10); ShowList(listTemp2);
cout << endl;
ShowList(listTemp3);
cout << endl; listTemp2.merge(listTemp3);
ShowList(listTemp2);
} bool myCmp (int first, int second)
{ return ( int(first)>int(second) ); } // merge()合并两个降序链表并使之成为另一个降序.
void merge_test2()
{
list<int> listTemp2;
listTemp2.push_back(4);
listTemp2.push_back(3); list<int> listTemp3;
listTemp3.push_back(10);
listTemp3.push_back(9); ShowList(listTemp2);
cout << endl;
ShowList(listTemp3);
cout << endl; // listTemp2.merge(listTemp3, greater<int>()); // 第二个参数可以是自己定义的函数如下
listTemp2.merge(listTemp3, myCmp);
ShowList(listTemp2);
} // splice()对两个链表进行结合(三个重载函数),结合后第二个链表清空
// void splice ( iterator position, list<T,Allocator>& x );
// void splice ( iterator position, list<T,Allocator>& x, iterator i );
// void splice ( iterator position, list<T,Allocator>& x, iterator first, iterator last );
void splice_test()
{
list<int> listTemp1(g_list1);
list<int> listTemp2(g_list2); ShowList(listTemp1);
ShowList(listTemp2);
cout << endl; //
listTemp1.splice(++listTemp1.begin(), listTemp2);
ShowList(listTemp1);
ShowList(listTemp2); //
listTemp1.assign(g_list1.begin(), g_list1.end());
listTemp2.assign(g_list2.begin(), g_list2.end());
listTemp1.splice(++listTemp1.begin(), listTemp2, ++listTemp2.begin());
ShowList(listTemp1);
ShowList(listTemp2); //
listTemp1.assign(g_list1.begin(), g_list1.end());
listTemp2.assign(g_list2.begin(), g_list2.end());
listTemp1.splice(++listTemp1.begin(), listTemp2, ++listTemp2.begin(), listTemp2.end());
ShowList(listTemp1);
ShowList(listTemp2); } // insert()在指定位置插入一个或多个元素(三个重载函数)
// iterator insert ( iterator position, const T& x );
// void insert ( iterator position, size_type n, const T& x );
// template <class InputIterator>
// void insert ( iterator position, InputIterator first, InputIterator last );
void insert_test()
{
list<int> listTemp1(g_list1);
ShowList(listTemp1);
listTemp1.insert(listTemp1.begin(), 51);
ShowList(listTemp1);
cout << endl; list<int> listTemp2(g_list1);
ShowList(listTemp2);
listTemp2.insert(listTemp2.begin(), 9, 51);
ShowList(listTemp2);
cout << endl; list<int> listTemp3(g_list1);
ShowList(listTemp3);
listTemp3.insert(listTemp3.begin(), g_list2.begin(), g_list2.end());
ShowList(listTemp3); } // swap()交换两个链表(两个重载)
void swap_test()
{
ShowList(g_list1);
ShowList(g_list2);
cout << endl; g_list1.swap(g_list2);
ShowList(g_list1);
ShowList(g_list2);
} bool same_integral_part (double first, double second)
{ return ( int(first)==int(second) ); } // unique()删除相邻重复元素
void unique_test()
{
list<int> listTemp;
listTemp.push_back(1);
listTemp.push_back(1);
listTemp.push_back(4);
listTemp.push_back(3);
listTemp.push_back(5);
listTemp.push_back(1);
list<int> listTemp2(listTemp); ShowList(listTemp);
listTemp.unique(); // 不会删除不相邻的相同元素
ShowList(listTemp);
cout << endl; listTemp.sort();
ShowList(listTemp);
listTemp.unique();
ShowList(listTemp);
cout << endl; listTemp2.sort();
ShowList(listTemp2);
listTemp2.unique(same_integral_part);
ShowList(listTemp2); } // 主函数,下面要测试哪个就把那个注释去掉即可
int _tmain(int argc, _TCHAR* argv[])
{
InitList();
// ShowList(g_list1);
// ShowList(g_list2); // constructor_test0();
// constructor_test1();
// constructor_test2();
// constructor_test3();
// constructor_test4();
// assign_test();
// operator_equality_test();
// front_test7();
// back_test();
// begin_test();
// end_test();
// rbegin_test();
// rend_test();
// push_back_test();
// push_front_test();
// pop_back_test();
// pop_front_test();
// clear_test();
// erase_test();
// remove_test();
// remove_if_test();
// empty_test();
// max_size_test();
// resize_test();
// reverse_test();
// sort_test();
// merge_test1();
// merge_test2();
// splice_test();
// insert_test();
// swap_test();
// unique_test();
return 0;
}
 

STL List容器的更多相关文章

  1. C++ STL vector容器学习

    STL(Standard Template Library)标准模板库是C++最重要的组成部分,它提供了一组表示容器.迭代器.函数对象和算法的模板.其中容器是存储类型相同的数据的结构(如vector, ...

  2. STL之容器适配器queue的实现框架

    说明:本文仅供学习交流,转载请标明出处,欢迎转载! 上篇文章STL之容器适配器stack的实现框架已经介绍了STL是怎样借助基础容器实现一种经常使用的数据结构stack (栈),本文介绍下第二种STL ...

  3. STL的容器算法迭代器的设计理念

    1) STL的容器通过类模板技术,实现数据类型和容器模型的分离. 2) STL的迭代器技术实现了遍历容器的统一方法:也为STL的算法提供了统一性. 3) STL的函数对象实现了自定义数据类型的算法运算 ...

  4. c++复习:STL之容器

    1 STL的string 1 String概念 string是STL的字符串类型,通常用来表示字符串.而在使用string之前,字符串通常是用char*表示的.string与char*都可以用来表示字 ...

  5. stl之容器、迭代器、算法几者之间的关系

    转自:https://blog.csdn.net/bobodem/article/details/49386131 stl包括容器.迭代器和算法: 容器 用于管理一些相关的数据类型.每种容器都有它的优 ...

  6. STL Queue 容器

    STL Queue 容器 Queue简介         queue是队列容器,是一种“先进先出”的容器.         queue是简单地装饰deque容器而成为另外的一种容器.        # ...

  7. STL stack 容器

    STL stack 容器 Stack简介 stack是堆栈容器,是一种“先进后出”的容器.      stack是简单地装饰deque容器而成为另外的一种容器.      #include <s ...

  8. STL Deque 容器

    STL Deque 容器 Deque简介 deque是“double-ended queue”的缩写,和vector一样都是STL的容器,deque是双 端的,而vector是单端的.         ...

  9. 浅谈C++ STL string容器

    浅谈C++ STL string容器 本篇随笔简单讲解一下\(C++STL\)中\(string\)容器的使用方法及技巧. string容器的概念 其实\(string\)并不是\(STL\)的一种容 ...

随机推荐

  1. centerOS安装chkrootkit

    Chkrootkit是一个在本地系统检查rootkit痕迹的工具,它是检查系统二进制文件是否被rootkit病毒修改的一个shell脚本. (1)centerOS安装chkrootkit 安装gcc编 ...

  2. CSS介绍

    从HTML被发明开始,样式就以各种形式存在.不同的浏览器结合它们各自的样式语言为用户提供页面效果的控制.最初的HTML只包含很少的显示属性. 随着HTML的成长,为了满足页面设计者的要求,HTML添加 ...

  3. SRM 588 D2 L3:GameInDarknessDiv2,DFS

    题目来源:http://community.topcoder.com/stat?c=problem_statement&pm=12710 采用DFS搜索,第一次写的时候忘了加访问标志,结果状态 ...

  4. 多路复用I/O epoll()

    epoll 是Linux内核中的一种可扩展IO事件处理机制,最早在 Linux 2.5.44内核中引入,可被用于代替POSIX select 和 poll 系统调用,并且在具有大量应用程序请求时能够获 ...

  5. JavaScript 公有 私有 静态属性和方法

    1.公有属性和公有方法 这里的 name  age  都是参数传递进去 可以在外面直接实例化调用. 2.私有属性和方法 私有的只能在函数内部使用 作用域的原因 3.静态属性和静态方法 这里我首先 创建 ...

  6. 监控工具cacti

    一. 安装 cacti服务端 1. 首先要安装epel扩展源yum install -y epel-release2. (lamp)然后分别安装httpd.php.mysqlyum install - ...

  7. MySql 事务+异常处理+异常抛出

    -- 测试用表 -- innodb 支持事务 CREATE TABLE `tb_test` ( `id` ) NOT NULL AUTO_INCREMENT, `name` ) NOT NULL, P ...

  8. CSS 设计模式一 元素

    1.background  内置 是一种CSS内置设计模式,支持在元素下显示图片 HTML <!DOCTYPE html> <html lang="en"> ...

  9. oc随笔二:组合、继承

    在oc中如果没有使用ARC的话,手动管理内存一定要注意处理好“野指针”,通常我们在释放指针的指向的地址时,都要将指针赋值为nil,这样能有效的防止野指针.常用的关键字:retain.assign .s ...

  10. [转]Hibernate映射的基本操作

       ++YONG原创,转载请注明http://blog.csdn.net/qjyong/article/details/1829672          Hibernate映射主要是通过对象关系映射 ...