Problem Description

With the 60th anniversary celebration of Nanjing University of Science and Technology coming soon, the university sets n tourist spots to welcome guests. Of course, Redwood forests in our university and its Orychophragmus violaceus must be recommended as top ten tourist spots, probably the best of all. Some undirected roads are made to connect pairs of tourist spots. For example, from Redwood forests (suppose it’s a) to fountain plaza (suppose it’s b), there may exist an undirected road with its length c. By the way, there is m roads totally here. Accidently, these roads’ length is an integer, and all of them are different. Some of these spots can reach directly or indirectly to some other spots. For guests, they are travelling from tourist spot s to tourist spot t, they can achieve some value f. According to the statistics calculated and recorded by us in last years, We found a strange way to calculate the value f:
From s to t, there may exist lots of different paths, guests will try every one of them. One particular path is consisted of some undirected roads. When they are travelling in this path, they will try to remember the value of longest road in this path. In the end, guests will remember too many longest roads’ value, so he cannot catch them all. But, one thing which guests will keep it in mind is that the minimal number of all these longest values. And value f is exactly the same with the minimal number.
Tom200 will recommend pairs (s, t) (start spot, end spot points pair) to guests. P guests will come to visit our university, and every one of them has a requirement for value f, satisfying f>=t. Tom200 needs your help. For each requirement, how many pairs (s, t) you can offer?
 
Input

Multiple cases, end with EOF.
First line:n m
n tourist spots ( <n<=), spots’ index starts from .
m undirected roads ( <m<=). Next m lines, integers, a b c
From tourist spot a to tourist spot b, its length is c. <a, b<n, c(<c<), all c are different. Next one line, integer, p (<p<=)
It means p guests coming. Next p line, each line one integer, t(<=t)
The value t you need to consider to satisfy f>=t.
 
Output

 For each guest's requirement value t, output the number of pairs satisfying f>=t.
Notice, (,), (,) are different pairs.
 
Sample Input

 
Sample Output

 
Source
 
 

题目大意:

给一无向图,n个点,m条边,每条边有个长度,且不一样。定义f(i,j)表示从节点i到节点j的所有路径中的最大边权值的最小值。有q个询问,每个询问有个t,求f(i,j)>=t的种数。

解题思路:

并查集+简单dp+二分。

思路,先按边从小到大排序考虑,对于每条边E该边两个节点为a、b,如果a、b不在同一个联通块,则a联通块中点集A和b联通块中点集B的f值一定为E(因为E升序)。恰好能使其通路。

map[i]表示以权值为i的边作为f值的点对个数。

sum[i]表示以大于等于第i大边权值的权值作为f值得点对总的个数。

对于每一个t,在排序了的sig[i](能取的边权值)中二分找到大于等于它的最小的小标j。输出sum[j]即可。

注意:

求点对个数时要乘以2.

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 10006
#define M 600000
#define inf 1e12
int n,m;
struct Node{
int x,y;
int cost;
}node[M];
////////////////////////////////////////////////////
int fa[N];
int cnt[N];
void init(){
for(int i=;i<N;i++){
fa[i]=i;
cnt[i]=;
}
}
int find(int x){
return fa[x]==x?x:fa[x]=find(fa[x]);
} //////////////////////////////////////////////////////
bool cmp(Node a,Node b){
return a.cost<b.cost;
}
////////////////////////////////////////////
int a[M];
int b[M];
int sum[M];
int main()
{
while(scanf("%d%d",&n,&m)==){ for(int i=;i<m;i++){
scanf("%d%d%d",&node[i].x,&node[i].y,&node[i].cost); }
sort(node,node+m,cmp); for(int i=;i<m;i++){
b[i]=node[i].cost;
} memset(a,,sizeof(a)); init();
int ans=;
for(int i=;i<m;i++){
int root1=find(node[i].x);
int root2=find(node[i].y);
if(root1==root2) continue;
fa[root1]=root2;
//ans=ans+2*cnt[root1]*cnt[root2];
a[i]=*cnt[root1]*cnt[root2];
cnt[root2]+=cnt[root1]; } memset(sum,,sizeof(sum));
for(int i=m-;i>=;i--){
sum[i]=sum[i+]+a[i];
} int q;
scanf("%d",&q);
while(q--){
int t;
scanf("%d",&t);
int w=lower_bound(b,b+m,t)-b;
printf("%d\n",sum[w]);
} }
return ;
}

hdu 4750 Count The Pairs(并查集+二分)的更多相关文章

  1. hdu 4750 Count The Pairs(并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 代码: #include<cstdio> #include<cstring&g ...

  2. HDU 4750 Count The Pairs(并查集)

    题目链接 没有发现那个点,无奈. #include <cstdio> #include <cstring> #include <cmath> #include &l ...

  3. HDU 4750 Count The Pairs (2013南京网络赛1003题,并查集)

    Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others ...

  4. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  5. 2013南京网赛1003 hdu 4750 Count The Pairs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意:给出一个无向图,f(a,b)表示从点a到点b的所有路径中的每条路径的最长边中的最小值,给出 ...

  6. HDU 4750 Count The Pairs (离线并查集)

    按边从小到大排序. 对于每条边(from, to, dist),如果from和to在同一个集合中,那么这条边无意义,因为之前肯定有比它更小的边连接了from和to. 如果from和to不属于同一个集合 ...

  7. [2013 ACM/ICPC Asia Regional Nanjing Online C][hdu 4750]Count The Pairs(kruskal + 二分)

    http://acm.hdu.edu.cn/showproblem.php?pid=4750 题意: 定义f(u,v)为u到v每条路径上的最大边的最小值..现在有一些询问..问f(u,v)>=t ...

  8. hdu 4750 Count The Pairs (2013南京网络赛)

    n个点m条无向边的图,对于q个询问,每次查询点对间最小瓶颈路 >=f 的点对有多少. 最小瓶颈路显然在kruskal求得的MST上.而输入保证所有边权唯一,也就是说f[i][j]肯定唯一了. 拿 ...

  9. HDU 3277 Marriage Match III(并查集+二分答案+最大流SAP)拆点,经典

    Marriage Match III Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

随机推荐

  1. Uiviewcontroller 控制器的生命周期

    这是一个ViewController完整的声明周期,其实里面还有好多地方需要我们注意一下: 1:initialize函数并不会每次创建对象都调用,只有在这个类第一次创建对象时才会调用,做一些类的准备工 ...

  2. Oracle与DB2的区别

    系统结构概述 首先,我们需要理解 Oracle 使用的架构,并理解它与 DB2 的不同之处.图 1 展示了 Oracle 的系统结构.将该图与 图 2 进行比较,后者显示了 DB2 的系统结构.在阅读 ...

  3. JS~重写alter与confirm,让它们变成fancybox风格

    插件与系统命令 对于很多JS弹框插件来说,都提供了alter,confirm等功能,如fancybox,Boxy等插件,今天来介绍一下如何将系统的alter和confirm替换成指定插件的alter和 ...

  4. html和css实现一级菜单和二级菜单学习笔记

    实现一级菜单: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> ...

  5. [Regular Expressions] Match the Same String Twice

    Regular Expression Backreferences provide us a method to match a previously captured pattern a secon ...

  6. Why Hadoop2

    自从Hadoop2出现之后,其迅速代替了Hadoop1的地位,并丰富了Hadoop的应用场景.假设如今有公司使用Hadoop的话,往往直接採用Hadoop2了. Hadoop2能被如此广泛的使用,肯定 ...

  7. SQLLoader3(数据文件没有分隔符时的导入)

    数据文件:D:\oracletest\ldr_tab_fiile.dat1.数据文件字段中间以制表符TAB隔开:7369 SMITH CLERK7499 ALLEN SALESMAN7521 WARD ...

  8. mysql设置字体

    如果在linux下重启mysql服务的时候出现Job failed to start,在window下重启失败,这是因为你安装了高版本的mysql(mysql5.5以上),在高版本对字符编码方式修改的 ...

  9. (原)Ubuntu16 中安装torch版的cudnn

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5668471.html 参考网址: https://devtalk.nvidia.com/default ...

  10. python之3内置容器

    所谓内置容器,就是不需要第三方模块,就可以使用的. 1.list容器,一个有序序列,类似于数组,但比数组强大很多 1.1.如何初始化list,直接一个[]即可,这是一个空的list >>& ...