数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)
我们来看一个灰度图像,让表示灰度出现的次数,这样图像中灰度为 的像素的出现概率是
是图像中全部的灰度数, 是图像中全部的像素数, 实际上是图像的直方图,归一化到 。
把 作为相应于 的累计概率函数, 定义为:
是图像的累计归一化直方图。
我们创建一个形式为 的变化,对于原始图像中的每一个值它就产生一个 ,这样 的累计概率函数就能够在全部值范围内进行线性化,转换公式定义为:
注意 T 将不同的等级映射到 域。为了将这些值映射回它们最初的域,须要在结果上应用以下的简单变换:
上面描写叙述了灰度图像上使用直方图均衡化的方法。可是通过将这样的方法分别用于图像RGB颜色值的红色、绿色和蓝色分量,从而也能够对彩色图像进行处理。
- Python: cv2.equalizeHist(src[, dst]) → dst
- C: void cvEqualizeHist(const CvArr* src, CvArr* dst)
-
Parameters: - src – Source 8-bit single channel image.
- dst – Destination image of the same size and type as src .
The function equalizes the histogram of the input image using the following algorithm:
Calculate the histogram for src .
Normalize the histogram so that the sum of histogram bins is 255.
Compute the integral of the histogram:
Transform the image using as a look-up table:
The algorithm normalizes the brightness and increases the contrast of the image.
# -*- coding: utf-8 -*-
#code:myhaspl@myhaspl.com
import cv2
fn="test1.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY)
newimg=cv2.equalizeHist(img)
cv2.imshow('src',img)
cv2.imshow('dst',newimg)
cv2.waitKey()
cv2.destroyAllWindows()
本博客全部内容是原创,假设转载请注明来源
http://blog.csdn.net/myhaspl/
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbXloYXNwbA==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
直方图均衡化通经常使用来添加很多图像的全局对照度,尤其是当图像的实用数据的对照度相当接近的时候。
通过这样的方法,亮度能够更好地在直方图上分布。这样就能够用于增强局部的对照度而不影响总体的对照度
本博客全部内容是原创,假设转载请注明来源
http://blog.csdn.net/myhaspl/
# -*- coding: utf-8 -*-
#code:myhaspl@myhaspl.com
#直方图均衡化
import cv2
import numpy as np
fn="test5.jpg"
myimg=cv2.imread(fn)
img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY)
h=img.shape[0]
w=img.shape[1]
newimg=np.zeros((h,w),np.uint8)
scount=0.0
#原始图像灰度级
scol={}
#目标图像灰度级
dcol={}
#原始图像频度
Ps={}
#累计概率
Cs={} #统计原始图像灰度级
for m in xrange(h):
for n in xrange(w):
scol[img[m,n]]=scol.setdefault(img[m,n],0)+1
scount+=1
数学之路-python计算实战(14)-机器视觉-图像增强(直方图均衡化)的更多相关文章
- 数学之路-python计算实战(13)-机器视觉-图像增强
指数变换的基本表达式为:y=bc(x-a)-1 当中參数b.c控制曲线的变换形状,參数a控制曲线的位置. 指数变换的作用是扩展图像的高灰度级.压缩低灰度级.能够用于亮度过高的图像 本博客全部内容是原创 ...
- 数学之路-python计算实战(21)-机器视觉-拉普拉斯线性滤波
拉普拉斯线性滤波,.边缘检測 . When ksize == 1 , the Laplacian is computed by filtering the image with the follow ...
- 数学之路-python计算实战(17)-机器视觉-滤波去噪(中值滤波)
Blurs an image using the median filter. C++: void medianBlur(InputArray src, OutputArray dst, int ks ...
- 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波
拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...
- 数学之路-python计算实战(15)-机器视觉-滤波去噪(归一化块滤波)
# -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #归一化块滤波 import cv2 import numpy as np fn="tes ...
- 数学之路-python计算实战(19)-机器视觉-卷积滤波
filter2D Convolves an image with the kernel. C++: void filter2D(InputArray src, OutputArray dst, int ...
- 数学之路-python计算实战(9)-机器视觉-图像插值仿射
插值 Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst interpolation – interpol ...
- 数学之路-python计算实战(16)-机器视觉-滤波去噪(邻域平均法滤波)
# -*- coding: utf-8 -*- #code:myhaspl@myhaspl.com #邻域平均法滤波,半径为2 import cv2 import numpy as np fn=&qu ...
- 数学之路-python计算实战(18)-机器视觉-滤波去噪(双边滤波与高斯滤波 )
高斯滤波就是对整幅图像进行加权平均的过程.每个像素点的值,都由其本身和邻域内的其它像素值经过加权平均后得到.高斯滤波的详细操作是:用一个模板(或称卷积.掩模)扫描图像中的每个像素.用模板确定的邻域内像 ...
随机推荐
- fieldset效果
<form> <fieldset> <legend>健康信息</legend> 身高:<input type="text" / ...
- eclipse 查看快捷键
无意中发现,ctrl+shift+L 能打开快捷键窗口
- Python网络编程——处理套接字错误
在网络应用中,经常会遇到这种情况:一方尝试连接,但另一方由于网络媒介失效或者其他原因无法响应. Python的Socket库提供了一个方法,能通过socket.error异常优雅地处理套接字错误. 1 ...
- nginx启动
查看nginx的进程 ps -ef | grep nginx 重启nginx的3种办法1.service nginx restart2.改了配置文件让其生效办法 nginx -s reload3.到n ...
- 使用python操作RabbitMQ,Redis,Memcache,SQLAlchemy 其一
一.概念 1.Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态 ...
- C# Thread Programming Start
引言 1.理解多线程 2. 线程异步与线程同步 3.创建多线程应用程序 3.1通过System.Threading命名空间的类构建 3.1.1异步调用线程 3.1.2并发问题 3.1.3线程同步 3. ...
- java学习之观察者设计模式
package com.gh.observer; import java.util.Observable; /** * 被观察者对象 * 必须继承被观察者抽象类 * @author ganhang * ...
- 使用client对象模型回写SharePoint列表
使用client对象模型回写SharePoint列表 client对象模型是一个有效的方式回写SharePoint列表. 1. 管理员身份打开VS,新建WPF应用程序SPWriteListApp,确保 ...
- HDU OJ 5326 Work( 2015多校联合训练第3场) 并查集
题目连接:戳ME #include <iostream> #include <cstdio> #include <cstring> using namespace ...
- BZOJ 2599: [IOI2011]Race( 点分治 )
数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...