C - Matrix Chain Multiplication

Crawling in process... Crawling failed Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Description

 

 

Matrix Chain Multiplication

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C).

The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input Specification

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer n ( ), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>
Line = Expression <CR>
Expression = Matrix | "(" Expression Expression ")"
Matrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output Specification

For each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input

9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output

0
0
0
error
10000
error
3500
15000
40500
47500
15125
题目大意:给你若干个矩阵(x*y),然后给你若干种计算公式,问你在该种计算公式情况下能否进行矩阵乘法运算,
若能进行,输出需进行乘法的次数。
思路分析:首先要对矩阵的乘法运算有一定了解,首先,A(x*y)和B(x*y)矩阵能否进行A*B运算的充要条件是是否满足
A.y==B.x,如果满足,则会得到矩阵C(A.x*B.y),这次运算进行的乘法的次数是A,x*A.y*B.y.下面就考虑如何进行
实现,首先括号里面是优先计算的,也就是说我们刚开始要计算的是最内层的括号里面的表达式,也就是在碰到第一个“)”
进行运算的表达式,每碰到一个”)“,就要进行一次矩阵运算,因此可以考虑用栈这种数据结构来实现,碰到”)“就进行
矩阵运算,把运算得到的矩阵再压入栈中,对于每一个矩阵,需要维护的信息是它的x和y,矩阵的类型可以用数组下标来区分。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <string>
#include <queue>
#include <stack>
using namespace std;
const int maxn=30;
struct nod
{
    int x;
    int y;
};
nod mat[maxn];
stack<nod> sta;
int main()
{
    int n,i;
    cin>>n;
    char s;
    int a,b;
    char  q[100];
    memset(mat,0,sizeof(mat));
    while(n--)
    {
        cin>>s>>a>>b;
        int i=s-'A';
        mat[i].x=a;
        mat[i].y=b;
    }
    int sum;
    while(scanf("%s",q)!=EOF)
    {
        sum=0;
        int l=strlen(q);
        for( i=0;i<l;i++)
        {
            if(q[i]=='(') continue;
            if(q[i]>='A'&&q[i]<='Z')
            {
              int k=q[i]-'A';
              sta.push(mat[k]);
            }
            if(q[i]==')')
            {
                nod m,k,w;
                m=sta.top();
                sta.pop();
                k=sta.top();
                sta.pop();
                if(k.y!=m.x)
                    break;
                w.x=k.x,w.y=m.y;
                sta.push(w);
                sum+=k.x*k.y*m.y;
            }
          }
           if(i==l) cout<<sum<<endl;
           else cout<<"error"<<endl;
      }
    return 0;
}

UVA442 栈的更多相关文章

  1. 【UVa-442】矩阵链乘——简单栈练习

    题目描述: 输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.如果乘法无法进行,输出error. Sample Input 9 A 50 10 B 10 20 C 20 5 D 30 35 E ...

  2. UVA442 Matrix Chain Multiplication 矩阵运算量计算(栈的简单应用)

    栈的练习,如此水题竟然做了两个小时... 题意:给出矩阵大小和矩阵的运算顺序,判断能否相乘并求运算量. 我的算法很简单:比如(((((DE)F)G)H)I),遇到 (就cnt累计加一,字母入栈,遇到) ...

  3. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

  4. UVa442 Matrix Chain Multiplication(栈)

    #include<cstdio>#include<cstring> #include<stack> #include<algorithm> #inclu ...

  5. UVa442 Matrix Chain Multiplication

    // UVa442 Matrix Chain Multiplication // 题意:输入n个矩阵的维度和一些矩阵链乘表达式,输出乘法的次数.假定A和m*n的,B是n*p的,那么AB是m*p的,乘法 ...

  6. UVa 442 Matrix Chain Multiplication(栈的应用)

    题目链接: https://cn.vjudge.net/problem/UVA-442 /* 问题 输入有括号表示优先级的矩阵链乘式子,计算该式进行的乘法次数之和 解题思路 栈的应用,直接忽视左括号, ...

  7. Uva442

    https://vjudge.net/problem/UVA-442 思路: 1)当遇到左括号将字母进栈,遇到右括号将字母出栈. 2) isalpha() 判断一个字符是否是字母 int isalph ...

  8. 通往全栈工程师的捷径 —— react

    腾讯Bugly特约作者: 左明 首先,我们来看看 React 在世界范围的热度趋势,下图是关键词“房价”和 “React” 在 Google Trends 上的搜索量对比,蓝色的是 React,红色的 ...

  9. Java 堆内存与栈内存异同(Java Heap Memory vs Stack Memory Difference)

    --reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ...

随机推荐

  1. Linux Shell脚本入门--(linux空设备文件和重定向)>/dev/null 2>&1

    linux空设备文件和重定向 输出/输入重导向 >      >>   <   <<   :>   &>   2&>   2< ...

  2. 同步关键字synchronized

    同步关键字synchronized 同步关键字synchronized使用简洁,代码可维护性好.在JDK6中,性能也比早期的JDK有很大的改进.如果可以满足程序要求,应该首先考虑这种同步方式. 关键字 ...

  3. 对mysql进行分表

    1. 有某个自段进行md5散列,然后生成ord SCII码 $num = ord(md5($user)) //是一个数字 参考 $num/3 ,$num/4;如果我们不是严格意义上的分表,可以参考分布 ...

  4. c++ 字符类型总结区别wchar_t,char,WCHAR(转)

    1.区别wchar_t,char,WCHAR ANSI:即 char,可用字符串处理函数:strcat( ),strcpy( ), strlen( )等以str打头的函数.   UNICODE:wch ...

  5. Android系统服务-简介

    http://blog.csdn.net/chenyafei617/article/details/6577907 Introduction 我们知道Android系统服务挺多的,做程序时经常会用到, ...

  6. cf C. Vasya and Robot

    http://codeforces.com/contest/355/problem/C 枚举L和R相交的位置. #include <cstdio> #include <cstring ...

  7. hdu 1301 Jungle Roads

    http://acm.hdu.edu.cn/showproblem.php?pid=1301 #include <cstdio> #include <cstring> #inc ...

  8. Visual Studio中的lib的链接顺序

    描述:如果有一个exe工程,它依赖于A.lib,B.lib,A.lib和B.DLL我同样有他们的源码工程.依赖顺序是这样的exe->A.lib->B.DLL.那么如果我改动了B的源码,编译 ...

  9. 完美:adobe premiere cs6破解版下载[序列号+汉化包+破解补丁+破解教程]

    原文地址:http://blog.sina.com.cn/s/blog_6306f2c60102f5ub.html 完美:adobe premiere cs6破解版下载,含序列号.汉化包.注册机.破解 ...

  10. Visual Studio 2012 编译C++显示cl命令

    为了用newlisp来实现VC编译,以便用我的Emacs开发VC程序,而不需要再打开VS 2012, 需要自己实现命令行的编译.我不需要nmake,因为我想直接了解VC编译器,以便今后更好的驾驭它. ...