3403: [Usaco2009 Open]Cow Line 直线上的牛

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 48  Solved: 41
[Submit][Status]

Description

题目描述
    约翰的N只奶牛(编为1到N号)正在直线上排队.直线上开始的时候一只牛也没有.接下来发生了S(1≤S≤100000)次事件,一次事件可能是以下四种情况之一:
  .一只奶牛加入队伍的左边(输入“AL”).
  .一只奶牛加入队伍的右边(输入“AR”).
  ·K只队伍左边奶牛离开(输入“DLK”).
  ·K只队伍右边奶牛离开(输入“DRK”).
    请求出最后的队伍是什么样.
    数据保证离开的奶牛不会超过队伍里的奶牛数,最后的队伍不空

Input

    第1行输入S,之后S行每行描述一次事件,格式如题目描述所示

Output

 
    由左到右输出队伍最后的情况.

Sample Input

10
A L
A L
A R
A L
D R 2
A R
A R
D L 1
A L
A R

Sample Output

7
2
5
6
8

HINT

Source

题解:
呵呵,暴力均摊复杂度也是O(n)的
代码:(copy)
 #include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=, k=; char c=getchar(); for(; c<''||c>''; c=getchar()) if(c=='-') k=-; for(; c>=''&&c<=''; c=getchar()) r=r*+c-''; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=;
int q[N], n, front, tail; inline void fix(int &x) { if(x<) x=N+x; if(x>=N) x-=N; }
int main() {
read(n);
int cnt=;
for1(i, , n) {
char ch=getchar(); while(ch<'A'||ch>'Z') ch=getchar();
if(ch=='A') {
ch=getchar(); while(ch<'A'||ch>'Z') ch=getchar();
if(ch=='L') { --front; fix(front); q[front]=++cnt; }
else if(ch=='R') q[tail++]=++cnt, fix(tail);
}
else if(ch=='D') {
ch=getchar(); while(ch<'A'||ch>'Z') ch=getchar();
int t=getint();
if(ch=='L') front+=t, fix(front);
else if(ch=='R') tail-=t, fix(tail);
}
}
while(front!=tail) {
printf("%d\n", q[front++]); fix(front);
}
return ;
}

BZOJ3403: [Usaco2009 Open]Cow Line 直线上的牛的更多相关文章

  1. BZOJ 3403: [Usaco2009 Open]Cow Line 直线上的牛( deque )

    直接用STL的的deque就好了... ---------------------------------------------------------------------- #include& ...

  2. 3403: [Usaco2009 Open]Cow Line 直线上的牛

    3403: [Usaco2009 Open]Cow Line 直线上的牛 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 71  Solved: 62[S ...

  3. 【BZOJ】3403: [Usaco2009 Open]Cow Line 直线上的牛(模拟)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3404 裸的双端队列.. #include <cstdio> #include <c ...

  4. B3403 [Usaco2009 Open]Cow Line 直线上的牛 deque

    deque真的秀,queue和stack...没啥用了啊.操作差不多,就是在前面加一个front||back_就行了. 题干: 题目描述 题目描述     约翰的N只奶牛(编为1到N号)正在直线上排队 ...

  5. BZOJ 3403: [Usaco2009 Open]Cow Line 直线上的牛(模拟)

    直接双端队列模拟,完了= = CODE: #include<cstdio>#include<algorithm>#include<iostream>#include ...

  6. 149 Max Points on a Line 直线上最多的点数

    给定二维平面上有 n 个点,求最多有多少点在同一条直线上. 详见:https://leetcode.com/problems/max-points-on-a-line/description/ Jav ...

  7. BZOJ3403:[USACO2009OPEN]Cow Line

    浅谈队列:https://www.cnblogs.com/AKMer/p/10314965.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?i ...

  8. [Swift]LeetCode149. 直线上最多的点数 | Max Points on a Line

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  9. LeetCode:149_Max Points on a line | 寻找一条直线上最多点的数量 | Hard

    题目:Max Points on a line Given n points on a 2D plane, find the maximum number of points that lie on ...

随机推荐

  1. android 反纠结app开发: 在线程中更新view

    大体上想实现一个思路: 对一个view 的内容进行不停地变化, 通过按钮停止这种变化,以达到随机选择的目的. 开发过程中 使用textview 模拟,  建立线程 mythread = new Thr ...

  2. Android BaseAdapter ListView (明星简介列表)

    1.搭建布局 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" andro ...

  3. Android常用ProgressDialog设置

    public static ProgressDialog initDialog(Context context) { ProgressDialog progressDialog = new Progr ...

  4. cocos2d-3.0 Helloworld::onTouchMoved的处理机制的推測

    bool sign2 = true; bool sign2 = true; void GameLayer::onTouchMoved(Touch *touch, Event *unused){ if( ...

  5. Java基础知识强化21:Java中length、length()、size()区别

    1.java中的length属性是针对数组说的,比如说你声明了一个数组,想知道这个数组的长度则用到了length这个属性.2.java中的length()方法是针对字符串String说的,如果想看这个 ...

  6. html:标签原本属性

    <!doctype html>无标题文档 a标签,默认有text-decoration属性 span标签不需要清零 b标签不需要清零 em标签不需要清零 strong 相邻内嵌元素代码里面 ...

  7. JAVA File转Byte[]

    /** * 获得指定文件的byte数组 */ public static byte[] getBytes(String filePath){ byte[] buffer = null; try { F ...

  8. 《CSS网站布局实录》学习笔记(五)

    第五章 CSS内容排版 5.1 文字排版 5.1.1 通栏排版 进行网页通栏排版时,只要直接将段落文字放置于p或者其他对象中,再对段落文字应用间距.行距.字号等样式控制,便形成了排版雏形. 5.1.2 ...

  9. linux jdk,java ee ,tomcat 安装配置

    1.把mypagekage.iso 挂载到linux操作系统中. 在VM做好配置,使用 mount /mnt/cdrom 2.把安装文件拷贝到/home cp 文件名 /home (快捷键tab) 3 ...

  10. 常用语句1【weber出品】

    1.查看控制文件位置: select * from v$controlfile show parameter control; 2.查询日志文件位置  select group#,status,mem ...