想学习一下SVM,所以找到了LIBSVM--A Library for Support Vector Machines,首先阅读了一下网站提供的A practical guide to SVM classification.

写一写个人认为主要的精华的东西。

SVMs is:a technique for data classification  

Goal is:to produce a model (based on training data) which predicts the target values of the test data given only the test data attributes.

Kernels:four basic kernels

Proposed Procedure:

1.transform data to the format of an SVM package

  first have to convert categorical attributes into numeric data.We recommend using m numbers to represent an m-category attribute and only one of the m numbers is one,and others are zeros. for example {red,green,blue} can be represented as (0,0,1),(0,1,0)and(1,0,0).

2.conduct simple scaling on the data

  Note:It's importance to use the same scaling factors for training and testing sets.

3.consider the RBF kernel K(x,y) = e-r||x-y||2

4.use cross-validation to find the best parameter C and r

  The cross-validation produce can prevent the overfitting problem.We recommend a "grid-search" on C and r using cross-validation.Various pairs of (C,r)values are tried and the one with the best cross-validation accuarcy is picked.Use a coarse grid to make a better region on the grid,a finer grid search on that region can be conducted.

  For very large data sets a feasible approach is to randomly choose a subset of the data set,conduct grid-search on them,and then do a better-region-only grid-search on the completly data set.

5.use the best parameter C and r to train the whole training set

6.Test

When to use Linear but not RBF Kernel ?

  If the number of features is large, one may not need to map data to a higher dimensional space. That is, the nonlinear mapping does not improve the performance.Using the linear kernel is good enough, and one only searches for the parameter C.

  C.1 Number of instances number of features  

    when the number of features is very large, one may not need to map the data.

  C.2 Both numbers of instances and features are large

    Such data often occur in document classication.LIBLINEAR is much faster than LIBSVM to obtain a model with comparable accuracy.LIBLINEAR is efficient for large-scale document classication.

  C.3 Number of instances number of features

    As the number of features is small, one often maps data to higher dimensional spaces(i.e., using nonlinear kernels).

Learn LIBSVM---a practical Guide to SVM classification的更多相关文章

  1. [笔记]A Practical Guide to Support Vector Classi cation

    <A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...

  2. A Practical Guide to Support Vector Classi cation

    <A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...

  3. A Practical Guide to Distributed Scrum - 分布式Scrum的实用指南 - 读书笔记

    最近读了这本IBM出的<A Practical Guide to Distributed Scrum>(分布式Scrum的实用指南),书中的章节结构比较清楚,是针对Scrum项目进行,一个 ...

  4. 信号处理的好书Digital Signal Processing - A Practical Guide for Engineers and Scientists

    诚心给大家推荐一本讲信号处理的好书<Digital Signal Processing - A Practical Guide for Engineers and Scientists>[ ...

  5. 【SVM】A Practical Guide to Support Vector Classi cation

    零.简介 一般认为,SVM比神经网络要简单. 优化目标:

  6. Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 1

    转自: http://www.confluent.io/blog/stream-data-platform-1/ These days you hear a lot about "strea ...

  7. The Practical Guide to Empathy Maps: 10-Minute User Personas

    That’s where the empathy map comes in. When created correctly, empathy maps serve as the perfect lea ...

  8. Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 2

    转自: http://confluent.io/blog/stream-data-platform-2          http://www.infoq.com/cn/news/2015/03/ap ...

  9. Parsing techniques: a practical guide下载

    轮子哥隆重推荐的书,一行代码.一句公式都没有,但是却什么都讲明白了的:<Parsing Techniques>.第一版官网免费下载,第二版多出来的东西你们用不上不用看了.全书只讲parsi ...

随机推荐

  1. SPOJDIVCNT2: Counting Divisors(莫比乌斯反演)

    http://acm.tzc.edu.cn/acmhome/vProblemList.do?method=problemdetail&oj=SPOJ&pid=DIVCNT2 给出n求 ...

  2. 【转】Ubuntu安装ARM架构GCC工具链(ubuntu install ARM toolchain)最简单办法

    原文网址:http://www.cnblogs.com/muyun/p/3370996.html 一.安装ARM-Linux-GCC工具链 只需要一句命令: sudo apt-get install ...

  3. Google street、Google satellite 、百度地图Iframe切换桥接JS

    1.地图切换方法 注意:父页面访问Iframe页面JS方法需根据Iframe的名字来调用如:named "mapIfame" 即 mapIfame.window.iframeFun ...

  4. 【HDU 4547 CD操作】LCA问题 Tarjan算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4547 题意:模拟DOS下的cd命令,给出n个节点的目录树以及m次查询,每个查询包含一个当前目录cur和 ...

  5. CF 39E What Has Dirichlet Got to Do with That? (博弈)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出a ^ b,两个人轮流操作,可以  a ...

  6. No.26

    "信是未见之事的实底,是所望之事的确据".

  7. Unity 移动MM自签名方式

    在使用Unity接移动MM SDK的时候,最后有一个签名.  主要是把计费文件和版权文件放入APK的根目录.  搞了半天才知道前来这么简单..... 软件使用: apk签名工具apktool

  8. IOS反地理编码取得城市名称

    // 获取当前所在的城市名 CLGeocoder *reverseGeocoder=[[CLGeocoder alloc] init]; [reverseGeocoder reverseGeocode ...

  9. Red and Black(简单dfs)

    Red and Black Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  10. Log4Net配置 转

    http://www.cnblogs.com/qingyi/archive/2010/01/14/1647915.html 用一些东西老是忘记,先记在这啦.. <!--log4net相关说明一. ...