Learn LIBSVM---a practical Guide to SVM classification
想学习一下SVM,所以找到了LIBSVM--A Library for Support Vector Machines,首先阅读了一下网站提供的A practical guide to SVM classification.
写一写个人认为主要的精华的东西。
SVMs is:a technique for data classification
Goal is:to produce a model (based on training data) which predicts the target values of the test data given only the test data attributes.
Kernels:four basic kernels
Proposed Procedure:
1.transform data to the format of an SVM package
first have to convert categorical attributes into numeric data.We recommend using m numbers to represent an m-category attribute and only one of the m numbers is one,and others are zeros. for example {red,green,blue} can be represented as (0,0,1),(0,1,0)and(1,0,0).
2.conduct simple scaling on the data
Note:It's importance to use the same scaling factors for training and testing sets.
3.consider the RBF kernel K(x,y) = e-r||x-y||2
4.use cross-validation to find the best parameter C and r
The cross-validation produce can prevent the overfitting problem.We recommend a "grid-search" on C and r using cross-validation.Various pairs of (C,r)values are tried and the one with the best cross-validation accuarcy is picked.Use a coarse grid to make a better region on the grid,a finer grid search on that region can be conducted.
For very large data sets a feasible approach is to randomly choose a subset of the data set,conduct grid-search on them,and then do a better-region-only grid-search on the completly data set.
5.use the best parameter C and r to train the whole training set
6.Test
When to use Linear but not RBF Kernel ?
If the number of features is large, one may not need to map data to a higher dimensional space. That is, the nonlinear mapping does not improve the performance.Using the linear kernel is good enough, and one only searches for the parameter C.
C.1 Number of instances number of features
when the number of features is very large, one may not need to map the data.
C.2 Both numbers of instances and features are large
Such data often occur in document classication.LIBLINEAR is much faster than LIBSVM to obtain a model with comparable accuracy.LIBLINEAR is efficient for large-scale document classication.
C.3 Number of instances number of features
As the number of features is small, one often maps data to higher dimensional spaces(i.e., using nonlinear kernels).
Learn LIBSVM---a practical Guide to SVM classification的更多相关文章
- [笔记]A Practical Guide to Support Vector Classication
<A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...
- A Practical Guide to Support Vector Classication
<A Practical Guide to Support Vector Classication>是一篇libSVM使用入门教程以及一些实用技巧. 1. Basic Kernels: ( ...
- A Practical Guide to Distributed Scrum - 分布式Scrum的实用指南 - 读书笔记
最近读了这本IBM出的<A Practical Guide to Distributed Scrum>(分布式Scrum的实用指南),书中的章节结构比较清楚,是针对Scrum项目进行,一个 ...
- 信号处理的好书Digital Signal Processing - A Practical Guide for Engineers and Scientists
诚心给大家推荐一本讲信号处理的好书<Digital Signal Processing - A Practical Guide for Engineers and Scientists>[ ...
- 【SVM】A Practical Guide to Support Vector Classication
零.简介 一般认为,SVM比神经网络要简单. 优化目标:
- Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 1
转自: http://www.confluent.io/blog/stream-data-platform-1/ These days you hear a lot about "strea ...
- The Practical Guide to Empathy Maps: 10-Minute User Personas
That’s where the empathy map comes in. When created correctly, empathy maps serve as the perfect lea ...
- Putting Apache Kafka To Use: A Practical Guide to Building a Stream Data Platform-part 2
转自: http://confluent.io/blog/stream-data-platform-2 http://www.infoq.com/cn/news/2015/03/ap ...
- Parsing techniques: a practical guide下载
轮子哥隆重推荐的书,一行代码.一句公式都没有,但是却什么都讲明白了的:<Parsing Techniques>.第一版官网免费下载,第二版多出来的东西你们用不上不用看了.全书只讲parsi ...
随机推荐
- MVC中一般为什么用IQueryable而不是用IList?用IQueryable比IList好在哪?
IList(IList<T>)会立即在内存里创建持久数据,这就没有实现"延期执行(deferred execution)",如果被加载的实体有关联实体(associat ...
- springMVC+ freemark多视图配置
<!--通用视图解析器--> <bean id="viewResolverCommon" class="org.springframework.web. ...
- SRAM与SDRAM的比较(转)
原文:http://blog.csdn.net/fg8181/article/details/2278100 内存在电脑中起着举足轻重的作用,一般采用半导体存储单元,包括随机存储器(RAM),只读存储 ...
- FileStream类
使用FileStream能够对对系统上的文件进行读.写.打开.关闭等操作.并对其他与文件相关的操作系统提供句柄操作,如管道,标准输入和标准输出.读写操作可以指定为同步或异步操作.FileStream对 ...
- xargs mv命令使用方法:ls *.mp3 |xargs -i mv {} /tmp
ls *.mp3 |xargs -i mv {} /tmp 或者 find . -name "*.mp3" -exec mv {} /tmp \;
- C语言的本质(34)——静态库
库是一种软件组件技术,库里面封装了数据和函数. 库的使用可以使程序模块化. Windows系统包括静态链接库(.lib文件)和动态链接库(.dll文件). Linux通常把库文件存放在/usr/lib ...
- bzoj1675 [Usaco2005 Feb]Rigging the Bovine Election 竞选划区
Description It's election time. The farm is partitioned into a 5x5 grid of cow locations, each of wh ...
- LeeCode-Insertion Sort List
Sort a linked list using insertion sort. /** * Definition for singly-linked list. * struct ListNode ...
- 关于set和map的用法
1.set 定义:每个元素最多只出现一次,并且默认的是从小到大排序. set 遍历: 题目http://www.cnblogs.com/ZP-Better/p/4700218.html for(set ...
- PHP 文件打开/读取
PHP Open File - fopen() 打开文件的更好的方法是通过 fopen() 函数.此函数为您提供比 readfile() 函数更多的选项. 在课程中,我们将使用文本文件 "w ...