leetcode之 median of two sorted arrays
这是我做的第二个leetcode题目,一开始以为和第一个一样很简单,但是做的过程中才发现这个题目非常难,给人一种“刚上战场就踩上地雷挂掉了”的感觉。后来搜了一下leetcode的难度分布表(leetcode难度及面试频率)才发现,该问题是难度为5的问题,真是小看了它!网上搜了很多答案,但是鲜见简明正确的解答,唯有一种寻找第k小值的方法非常好,在此整理一下。
首先对leetcode的编译运行吐槽一下:貌似没有超时判断,而且small和large的数据集相差很小。此题一开始我采用最笨的方法去实现,利用排序将两个数组合并成一个数组,然后返回中位数:
class Solution {
public:
double findMedianSortedArrays(int A[], int m, int B[], int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int *a=new int[m+n]; memcpy(a,A,sizeof(int)*m);
memcpy(a+m,B,sizeof(int)*n); sort(a,a+n+m); double median=(double) ((n+m)%2? a[(n+m)>>1]:(a[(n+m-1)>>1]+a[(n+m)>>1])/2.0); delete a; return median;
}
};
该方法居然也通过测试,但是其复杂度最坏情况为O(nlogn),这说明leetcode只对算法的正确性有要求,时间要求其实不严格。
另一种方法即是利用类似merge的操作找到中位数,利用两个分别指向A和B数组头的指针去遍历数组,然后统计元素个数,直到找到中位数,此时算法复杂度为O(n)。之后还尝试了根据算法导论中的习题(9.3-8)扩展的方法,但是该方法会存在无穷多的边界细节问题,而且扩展也不见得正确,这个可从各网页的评论看出,非常不建议大家走这条路。
最后从medianof two sorted arrays中看到了一种非常好的方法。原文用英文进行解释,在此我们将其翻译成汉语。该方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。
首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。
证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。
当A[k/2-1]>B[k/2-1]时存在类似的结论。
当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。
通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:
- 如果A或者B为空,则直接返回B[k-1]或者A[k-1];
- 如果k为1,我们只需要返回A[0]和B[0]中的较小值;
- 如果A[k/2-1]=B[k/2-1],返回其中一个;
最终实现的代码为:
double findKth(int a[], int m, int b[], int n, int k)
{
//always assume that m is equal or smaller than n
if (m > n)
return findKth(b, n, a, m, k);
if (m == 0)
return b[k - 1];
if (k == 1)
return min(a[0], b[0]);
//divide k into two parts
int pa = min(k / 2, m), pb = k - pa;
if (a[pa - 1] < b[pb - 1])
return findKth(a + pa, m - pa, b, n, k - pa);
else if (a[pa - 1] > b[pb - 1])
return findKth(a, m, b + pb, n - pb, k - pb);
else
return a[pa - 1];
} class Solution
{
public:
double findMedianSortedArrays(int A[], int m, int B[], int n)
{
int total = m + n;
if (total & 0x1)
return findKth(A, m, B, n, total / 2 + 1);
else
return (findKth(A, m, B, n, total / 2)
+ findKth(A, m, B, n, total / 2 + 1)) / 2;
}
};
我们可以看出,代码非常简洁,而且效率也很高。在最好情况下,每次都有k一半的元素被删除,所以算法复杂度为logk,由于求中位数时k为(m+n)/2,所以算法复杂度为log(m+n)。
leetcode之 median of two sorted arrays的更多相关文章
- 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays
一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...
- LeetCode(3) || Median of Two Sorted Arrays
LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题 ...
- LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)
题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 an ...
- Leetcode 4. Median of Two Sorted Arrays(二分)
4. Median of Two Sorted Arrays 题目链接:https://leetcode.com/problems/median-of-two-sorted-arrays/ Descr ...
- LeetCode 4. Median of Two Sorted Arrays & 归并排序
Median of Two Sorted Arrays 搜索时间复杂度的时候,看到归并排序比较适合这个题目.中位数直接取即可,所以重点是排序. 再来看看治阶段,我们需要将两个已经有序的子序列合并成一个 ...
- 第三周 Leetcode 4. Median of Two Sorted Arrays (HARD)
4. Median of Two Sorted Arrays 给定两个有序的整数序列.求中位数,要求复杂度为对数级别. 通常的思路,我们二分搜索中位数,对某个序列里的某个数 我们可以在对数时间内通过二 ...
- Leetcode 4. Median of Two Sorted Arrays(中位数+二分答案+递归)
4. Median of Two Sorted Arrays Hard There are two sorted arrays nums1 and nums2 of size m and n resp ...
- LeetCode 004 Median of Two Sorted Arrays
题目描述:Median of Two Sorted Arrays There are two sorted arrays A and B of size m and n respectively. F ...
- leetcode 4. Median of Two Sorted Arrays
https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 and num ...
随机推荐
- select自动选中
//筛选 var typeid = "<!--{$typeid}-->"; var bigclassid = "<!--{$bigclassid}--& ...
- 【HDU 4451 Dressing】水题,组合数
有衣服.裤子.鞋数量分别为n,m,k,给出p对不和谐的衣-裤或裤-鞋搭配,问一共有多少种和谐的衣裤鞋的搭配. 全部的组合有Cn1Cm1Ck1种. 设p对中有p1对衣-裤,p2对裤-鞋,则不和谐的搭配共 ...
- Ubuntu 14.04 下使用IDEA开发Spark应用 入门
网上有很多教程,有用sbt ,也有不用sbt的,看的头大,搞了半天,终于运行成功一个例子,如下: 1.官网下载http://www.jetbrains.com/idea/download/ Inter ...
- Windows下安装Python3.4.2
一.Windows下安装Python3.4.2 1.下载Windows下的Python3.4.2.exe 2.指定一个目录安装,然后下一步 3.配置环境变量包括Python.exe的文件.目录如下图所 ...
- pl/sql查询中文乱码
1.设置系统环境变量 变量名:NLS_LANG 变量值:SIMPLIFIED CHINESE_CHINA.ZHS16GBK 2.修改注册表 regedit->hkey_local_machine ...
- Redmine开启服务
写了一个启动Redmine的开机脚本,redmine文件在/etc/init.d/下 #!/bin/sh ### BEGIN INIT INFO # Provides: Dean Chen # Req ...
- SQLServer中临时表与表变量的区别分析【转】
在实际使用的时候,我们如何灵活的在存储过程中运用它们,虽然它们实现的功能基本上是一样的,可如何在一个存储过程中有时候去使用临时表而不使用表变量,有时候去使用表变量而不使用临时表呢? 临时表 临时表与永 ...
- 从U盘安装win8系统
http://blog.csdn.net/pipisorry/article/details/40662397 lz提示,下面也能够用于win7.linux等操作系统的安装 一.下载windows安装 ...
- asp.net中的绝对路径和相对路径
一.关于相对路径和绝对路径相对路径转绝对路径一般,我们在ASP.NET网站中往往需要把一个相对路径转化为绝对路径.通常是用Server.MapPath()方法.比如网站根目录下有 个"Upl ...
- 使用sumlime text有感
学习JS和CSS.HTML用sublime text挺好的,这个工具不仅打开速度很快,而且也容易让页面运行(右键,在浏览器中打开),新建html页面的时候,先写个感叹号,然后按ctrl+e,会自动生成 ...