Problem Description
        A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.

In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.

In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.

In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.

Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.

 
Input
The input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.

 
Output
For each test case print a single line specifying the corresponding postorder sequence.

 
Sample Input
9
1 2 4 7 3 5 8 9 6
4 7 2 1 8 5 9 3 6
 
Sample Output
7 4 2 8 9 5 6 3 1
 
 
 
 

注: 已知二叉树的前序和中序遍历, 可以唯一确定二叉树的后序遍历, 但如果知道前序和后序,求中序遍历是不可能实现的.

 

算法:

由前序遍历的第一个元素可确定左、右子树的根节点,参照中序遍历又可进一步确定子树的左、

右子树元素。如此递归地参照两个遍历序列,最终构造出二叉树。

由前序和中序结果求后序遍历结果

树的遍历:给你一棵树的先序遍历结果和中序遍历的结果,让你求以后序遍历输出用递归。

每次把两个数组分成三个部分,父节点,左子树,右子树,把父节点放到数组里边,重复此步骤直到重建一棵新树

,  这时,数组里元素刚好是后序遍历的顺序

关键点:

中序遍历的特点是先遍历左子树,接着根节点,然后遍历右子树。这样根节点就把左右子树隔开了。而前序遍历的特点是先访问根节点,从而实现前序遍历结果提供根节点信息,中序遍历提供左右子树信息,从而实现二叉树的重建

【注明】

先序的排列里第一个元素是根,再比较中序的排列里根所在的位置,则能确定左子树,右子树元素个数numleft,numright且在先序排列里,先是一个根,再是numleft个左子树的元素排列,最后是numright个右子树的元素排列。

该过程就是从inorder数组中找到一个根,然后从preorder数组的位置来确定改点到底是左儿子还是右儿子。如此一直循环下去知道一棵完整的数建立完成。

#include <stdio.h>
#include <stdlib.h> const int MAX = 1000 + 10;
int n,in[MAX],pre[MAX];
typedef struct BITree
{
int data,index;
BITree *Left,*Right;
}BiTree,*Tree; void DFS(Tree &root,int index)
{
if(root == NULL){
root = (Tree)malloc(sizeof(BiTree));
root->data = in[index];
root->index = index;
root->Left = NULL;
root->Right = NULL;
}else
{
if(index < root->index)
DFS(root->Left,index);
else
DFS(root->Right,index);
}
} void CreateTree(Tree &root)
{
int i,j,index;
root = (Tree)malloc(sizeof(BiTree));
for(i = 1;i <= n;i++)
if(in[i] == pre[1])
{
root->data = pre[1];
root->index = i;
root->Left = NULL;
root->Right = NULL;
break;
}
index = i;
for(i = 2;i <= n;i++)
for(j = 1;j <= n;j++)
if(in[j] == pre[i])
{
if(j < index)
DFS(root->Left,j);
else
DFS(root->Right,j);
break;
}
} void PostOrder(Tree root,int x)
{
if(root == NULL) return ;
PostOrder(root->Left,x+1);
PostOrder(root->Right,x+1);
if(x == 0)
printf("%d",root->data);
else
printf("%d ",root->data);
} int main()
{
int i;
while(scanf("%d",&n)!=EOF)
{
Tree root;
for(i = 1;i <= n;i++)
scanf("%d",&pre[i]);
for(i = 1;i <= n;i++)
scanf("%d",&in[i]);
CreateTree(root);
PostOrder(root,0);
printf("\n");
}
return 0;
}

 
#include <iostream>
#include <cstdio>
using namespace std; const int MAX = 1000 + 10;
typedef struct BITree
{
int data;
BITree *Left,*Right;
BITree()
{
Left = NULL;
Right = NULL;
}
}*BiTree;
int pre[MAX],in[MAX]; void BuildTree(BiTree &root,int len,int pst,int ped,int inst,int ined)
{
int i,left_len = 0;
if(len<=0)return; //递归终止的条件
root = new BITree;
root->data = pre[pst];
for(i = inst;i <= ined;i++)
if(in[i] == pre[pst])
{
left_len = i - inst;
break;
}
BuildTree(root->Left,left_len,pst+1,pst+left_len,inst,i-1);
BuildTree(root->Right,len-left_len-1,pst+left_len+1,ped,i+1,ined);
} void PostTravel(BITree *root)
{
if(root)
{
PostTravel(root->Left);
PostTravel(root->Right);
printf("%d ",root->data);
}
} int main()
{
int i,n;
BiTree root;
while(scanf("%d",&n)!=EOF)
{
for(i = 1;i <= n;i++)
scanf("%d",&pre[i]);
for(i = 1;i <= n;i++)
scanf("%d",&in[i]);
BuildTree(root,n,1,n,1,n);
PostTravel(root->Left);
PostTravel(root->Right);
printf("%d\n",root->data);
}
return 0;
}

Hdu Binary Tree Traversals的更多相关文章

  1. HDU 1710 二叉树的遍历 Binary Tree Traversals

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. HDU 1710 Binary Tree Traversals (二叉树遍历)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  3. HDU 1710 Binary Tree Traversals(树的建立,前序中序后序)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  4. hdu 1710 Binary Tree Traversals 前序遍历和中序推后序

    题链;http://acm.hdu.edu.cn/showproblem.php?pid=1710 Binary Tree Traversals Time Limit: 1000/1000 MS (J ...

  5. hdu 1701 (Binary Tree Traversals)(二叉树前序中序推后序)

                                                                                Binary Tree Traversals T ...

  6. hdu1710(Binary Tree Traversals)(二叉树遍历)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  7. HDU-1701 Binary Tree Traversals

    http://acm.hdu.edu.cn/showproblem.php?pid=1710 已知先序和中序遍历,求后序遍历二叉树. 思路:先递归建树的过程,后后序遍历. Binary Tree Tr ...

  8. HDU 1710-Binary Tree Traversals(二进制重建)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  9. Binary Tree Traversals(HDU1710)二叉树的简单应用

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

随机推荐

  1. to_date如何处理毫秒?

    http://blog.csdn.net/jamex/archive/2008/09/08/2899172.aspx to_date如何处理毫秒? 如把"1970-01-01 00:00:0 ...

  2. Pig On Mac

    Install 首先是 Mac OS 下的安装 1 2 export JAVA_HOME=$(/usr/libexec/java_home) brew install pig Run Pig 运行分为 ...

  3. objective-c 可变参数

    容易发现Cocoa Foundation 中提供了一些可变参数的方法,如: NSLog(NSString *format, ...) 在实际的编程实践中,我们也需要自己实现可变参数的方法.在Objc中 ...

  4. php获取服务器地址

    if ( isset( $_SERVER['HTTP_X_FORWARDED_HOST'] ) ) { // Support ProxyPass        $t_hosts = explode( ...

  5. Linux--根文件系统的挂载过程分析

    前言: 本篇文章以S3C6410公版的Linux BSP和U-Boot来进行分析,文中全部提及的名词和数据都是以该环境为例,全部的代码流程也是以该环境为例来进行分析.哈哈.假设有不对或者不完好的地方, ...

  6. JAVA责任链设计模式

    <JAVA与模式>之责任链模式 在阎宏博士的<JAVA与模式>一书中开头是这样描述责任链(Chain of Responsibility)模式的: 责任链模式是一种对象的行为模 ...

  7. javascript高级知识分析——作为对象的函数

    代码信息来自于http://ejohn.org/apps/learn/. 函数和对象是不是非常相似? var obj = {}; var fn = function(){}; console.log( ...

  8. 自适应Cell

        // //  ViewController.m //  04-自适应cell // //  Created by 

  9. BOOST CHRONO steadycolock::now分析

    一直觉得boost的时间库不是很好用,当然,也有可能是我没有深入理解,所以,把代码弄出来看看或许要好些,时间处理中,取当前时间真的是太常见,而boost中各种clock又区分不清楚,然而,代码能说明一 ...

  10. Linux学习之tail命令

    tail 命令从指定点开始将文件写到标准输出.使用tail命令的-f选项可以方便的查阅正在改变的日志文件,tail -f filename会把filename里最尾部的内容显示在屏幕上,并且不但刷新, ...