Problem Description
        A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.

In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.

In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.

In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.

Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.

 
Input
The input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.

 
Output
For each test case print a single line specifying the corresponding postorder sequence.

 
Sample Input
9
1 2 4 7 3 5 8 9 6
4 7 2 1 8 5 9 3 6
 
Sample Output
7 4 2 8 9 5 6 3 1
 
 
 
 

注: 已知二叉树的前序和中序遍历, 可以唯一确定二叉树的后序遍历, 但如果知道前序和后序,求中序遍历是不可能实现的.

 

算法:

由前序遍历的第一个元素可确定左、右子树的根节点,参照中序遍历又可进一步确定子树的左、

右子树元素。如此递归地参照两个遍历序列,最终构造出二叉树。

由前序和中序结果求后序遍历结果

树的遍历:给你一棵树的先序遍历结果和中序遍历的结果,让你求以后序遍历输出用递归。

每次把两个数组分成三个部分,父节点,左子树,右子树,把父节点放到数组里边,重复此步骤直到重建一棵新树

,  这时,数组里元素刚好是后序遍历的顺序

关键点:

中序遍历的特点是先遍历左子树,接着根节点,然后遍历右子树。这样根节点就把左右子树隔开了。而前序遍历的特点是先访问根节点,从而实现前序遍历结果提供根节点信息,中序遍历提供左右子树信息,从而实现二叉树的重建

【注明】

先序的排列里第一个元素是根,再比较中序的排列里根所在的位置,则能确定左子树,右子树元素个数numleft,numright且在先序排列里,先是一个根,再是numleft个左子树的元素排列,最后是numright个右子树的元素排列。

该过程就是从inorder数组中找到一个根,然后从preorder数组的位置来确定改点到底是左儿子还是右儿子。如此一直循环下去知道一棵完整的数建立完成。

#include <stdio.h>
#include <stdlib.h> const int MAX = 1000 + 10;
int n,in[MAX],pre[MAX];
typedef struct BITree
{
int data,index;
BITree *Left,*Right;
}BiTree,*Tree; void DFS(Tree &root,int index)
{
if(root == NULL){
root = (Tree)malloc(sizeof(BiTree));
root->data = in[index];
root->index = index;
root->Left = NULL;
root->Right = NULL;
}else
{
if(index < root->index)
DFS(root->Left,index);
else
DFS(root->Right,index);
}
} void CreateTree(Tree &root)
{
int i,j,index;
root = (Tree)malloc(sizeof(BiTree));
for(i = 1;i <= n;i++)
if(in[i] == pre[1])
{
root->data = pre[1];
root->index = i;
root->Left = NULL;
root->Right = NULL;
break;
}
index = i;
for(i = 2;i <= n;i++)
for(j = 1;j <= n;j++)
if(in[j] == pre[i])
{
if(j < index)
DFS(root->Left,j);
else
DFS(root->Right,j);
break;
}
} void PostOrder(Tree root,int x)
{
if(root == NULL) return ;
PostOrder(root->Left,x+1);
PostOrder(root->Right,x+1);
if(x == 0)
printf("%d",root->data);
else
printf("%d ",root->data);
} int main()
{
int i;
while(scanf("%d",&n)!=EOF)
{
Tree root;
for(i = 1;i <= n;i++)
scanf("%d",&pre[i]);
for(i = 1;i <= n;i++)
scanf("%d",&in[i]);
CreateTree(root);
PostOrder(root,0);
printf("\n");
}
return 0;
}

 
#include <iostream>
#include <cstdio>
using namespace std; const int MAX = 1000 + 10;
typedef struct BITree
{
int data;
BITree *Left,*Right;
BITree()
{
Left = NULL;
Right = NULL;
}
}*BiTree;
int pre[MAX],in[MAX]; void BuildTree(BiTree &root,int len,int pst,int ped,int inst,int ined)
{
int i,left_len = 0;
if(len<=0)return; //递归终止的条件
root = new BITree;
root->data = pre[pst];
for(i = inst;i <= ined;i++)
if(in[i] == pre[pst])
{
left_len = i - inst;
break;
}
BuildTree(root->Left,left_len,pst+1,pst+left_len,inst,i-1);
BuildTree(root->Right,len-left_len-1,pst+left_len+1,ped,i+1,ined);
} void PostTravel(BITree *root)
{
if(root)
{
PostTravel(root->Left);
PostTravel(root->Right);
printf("%d ",root->data);
}
} int main()
{
int i,n;
BiTree root;
while(scanf("%d",&n)!=EOF)
{
for(i = 1;i <= n;i++)
scanf("%d",&pre[i]);
for(i = 1;i <= n;i++)
scanf("%d",&in[i]);
BuildTree(root,n,1,n,1,n);
PostTravel(root->Left);
PostTravel(root->Right);
printf("%d\n",root->data);
}
return 0;
}

Hdu Binary Tree Traversals的更多相关文章

  1. HDU 1710 二叉树的遍历 Binary Tree Traversals

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. HDU 1710 Binary Tree Traversals (二叉树遍历)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  3. HDU 1710 Binary Tree Traversals(树的建立,前序中序后序)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  4. hdu 1710 Binary Tree Traversals 前序遍历和中序推后序

    题链;http://acm.hdu.edu.cn/showproblem.php?pid=1710 Binary Tree Traversals Time Limit: 1000/1000 MS (J ...

  5. hdu 1701 (Binary Tree Traversals)(二叉树前序中序推后序)

                                                                                Binary Tree Traversals T ...

  6. hdu1710(Binary Tree Traversals)(二叉树遍历)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  7. HDU-1701 Binary Tree Traversals

    http://acm.hdu.edu.cn/showproblem.php?pid=1710 已知先序和中序遍历,求后序遍历二叉树. 思路:先递归建树的过程,后后序遍历. Binary Tree Tr ...

  8. HDU 1710-Binary Tree Traversals(二进制重建)

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  9. Binary Tree Traversals(HDU1710)二叉树的简单应用

    Binary Tree Traversals Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

随机推荐

  1. Firebug入门指南(转)

    据说,对于网页开发人员来说,Firebug是Firefox浏览器中最好的插件之一. 我最近就在学习怎么使用Firebug,网上找到一篇针对初学者的教程,感觉比较有用,就翻译了出来. 作者:Estell ...

  2. Windows Azure 社区新闻综述(#69 版)

    欢迎查看最新版本的每周综述,其中包含有关云计算和 WindowsAzure 的社区推动新闻.内容和对话. 以下是过去一周基于您的反馈汇集在一起的内容: 文章.视频和博客文章 ·     使用 Azur ...

  3. uvalive 6657 GCD XOR

    //感觉太长时间没做题 好多基本的能力都丧失了(>_<) 首先大概是这样的,因为gcd(a,b)=c,所以a,b都是c的倍数,所以我们依次枚举a的值为2c 3c 4c......,a xo ...

  4. ssh 应用

    SSH反向连接及Autossh ssh 隧道: http://www.cnblogs.com/robinyjj/archive/2008/11/02/1325018.html This guy wri ...

  5. php中有用插件集合

    1. NuSOAP NuSOAP提供一组PHP类用于帮助开发者创建和调用基于SOAP1.1.WSDL1.1与HTTP1.0/1.1的Web Services, 可以跨平台.跨语言的请求服务.

  6. linux下创建可引导的U盘系统,使用dd命令进行Linux的ghost

    1,通过iso创建可引导的U盘系统. 1.0,格式化U盘为FAT32格式 linux下能够使用命令: mkfs.vfat U盘的设备路径 比如: mkfs.vfat /dev/sdb 当中U盘的路径能 ...

  7. Web API核查表:设计、测试、发布API时需思考的43件事[转]

    Web API核查表:设计.测试.发布API时需思考的43件事   当设计.测试或发布一个新的Web API时,你是在一个原有的复杂系统上构建新的系统.那么至少,你也要建立在HTTP上,而HTTP则是 ...

  8. C++关注备注部分知识点

    //关注备注部分知识点. #include <iostream> #include <string><span style="white-space:pre&q ...

  9. 密码算法详解——Simon

    0 Simon简介 详细文档请直接阅读参考文献[1]. Simon是由NSA设计的轻量级分组密码算法(LIGHTWEIGHT BLOCK CIPHER).主要应用于硬件或软件条件受限(例如:芯片面积要 ...

  10. Java面试题之Class.forName的作用

    按参数中指定的字符串形式的类名去搜索并加载相应的类,如果该类字节码已经被加载过,则返回代表该字节码的Class实例对象,否则,按类加载器的委托机制去搜索和加载该类,如果所有的类加载器都无法加载到该类, ...