@atcoder - Japanese Student Championship 2019 Qualification - F@ Candy Retribution
@description@
请找到满足以下条件的长度为 N 的非负整数序列 A1, A2, ..., AN 的数量。
(1)L≤A1+A2+...+AN≤R。
(2)将 N 个元素排成非增序列后,第 M 个元素要等于第 M + 1 个元素。
请将答案 mod 10^9 + 7。
Constraints
所有数都是整数。
1≤M<N≤3×10^5, 1≤L≤R≤3×10^5。
Input
输入形式如下:
N M L R
Output
输出序列数量 mod 10^9 + 7。
Sample Input 1
4 2 3 7
Sample Output 1
105
Sample Input 2
2 1 4 8
Sample Output 2
3
@solution@
即使放在最后一题,但其实这道题也是比较水的组合计数(所以为什么当时我做不起啊喂)。
令 f(N, M, S) 表示序列满足 0 <= A1 + A2 + ... + AN <= S 且满足题目所说的第二个条件时的答案,则最终答案 = f(N, M, R) - f(N, M, L - 1)。
先只考虑 A1 + A2 + ... + AN <= S 的条件,令 B = S - A1 - A2 - ... - AN,则 B >= 0 且 A1 + A2 + ... + AN + B = S。这样转化以后就可以把不等式化为等式,用隔板法可以快速统计出方案数(其实很像线性规划的标准型转松弛型)。
满足第二个条件,一种想法是用 \(C_N^M\) 算前 M 大的数所在的位置,将前 M 大与后 N-M 分开讨论。但是因为数可以相同,这样算出来会重复(即前 M 大可能跟后 N-M 有数字相同,会互相影响)。
但如果反过来,我们令排序后的 A'[M] ≠ A'[M+1]。因为排好序了,所以 A'[M] > A'[M+1] ,这样前 M 大与后 N-M 就分开来了。
通过计算强制不等于的方案数,用不带限制的方案数 - 强制不等于的方案数就可以得到答案。
枚举 A[M] = x,现在的限制转变为要求序列中有 M 个数 >= x,剩余 N - M 个数 < x,且至少要有一个数 = x。可以最后乘上系数 \(C_N^M\) 表示选择哪几个数 >= x。
注意到最后一个条件很碍眼,但是如果去掉可能会算重复。
我们这样来处理:用 “M 个数 >= x, N - M 个数 < x 的方案数” 减去 “M 个数 > x, N - M 个数 < x 的方案数”,即再次使用容斥。
现在问题转为:A1 + A2 + ... + AN + B = S;A[1], A[2], ... A[M] >= p;0 <= A[M+1], A[M+2], ... A[N] < q 的方案数。
限制 A[1], A[2], ... A[M] >= p 可以通过预先将 S 减去 M*p 来处理,这样就可以把 A[1...M] 的下界变成 0。
限制 A[M+1], A[M+2], ... A[N] < q 可以使用容斥,枚举强制选 k 个数 >= q,然后一样将 S 减去 k*q 将下界变成 0。乘上系数 \(C_{N-M}^{k}\) 表示选择哪 k 个数。
最后关于时间复杂度,因为 S - k*q >= 0 才有意义,所以最后的容斥是 O(S/q) 的复杂度,而其他地方的计算是常数级别。
而 q 是从 1...K 中枚举出来的数,所以时间复杂度为 O(S/1 + S/2 + ... + S/K)。因为 S 与 K 同阶,可以近似地看作 O(K log K)。
@accepted code@
#include<cstdio>
const int MAXN = 1000000;
const int MOD = int(1E9) + 7;
int pow_mod(int b, int p) {
int ret = 1;
while( p ) {
if( p & 1 ) ret = 1LL*ret*b%MOD;
b = 1LL*b*b%MOD;
p >>= 1;
}
return ret;
}
int fct[MAXN + 5], ifct[MAXN + 5];
void init() {
fct[0] = 1;
for(int i=1;i<=MAXN;i++)
fct[i] = 1LL*fct[i-1]*i%MOD;
ifct[MAXN] = pow_mod(fct[MAXN], MOD-2);
for(int i=MAXN-1;i>=0;i--)
ifct[i] = 1LL*ifct[i+1]*(i+1)%MOD;
}
int comb(int n, int m) {return 1LL*fct[n]*ifct[m]%MOD*ifct[n-m]%MOD;}
int solve2(int N, int M, int S, int l, int r) {
int ret = 0;
if( S - 1LL*M*r < 0 ) return ret;
else S -= M*r;
for(int i=0,f=1;i<=N-M&&S>=0;i++,f=1LL*f*(MOD-1)%MOD,S-=l)
ret = (ret + 1LL*f*comb(S + N, N)%MOD*comb(N - M, i)%MOD)%MOD;
return 1LL*ret*comb(N, M)%MOD;
}
//A1 + A2 + ... + AN + B = S, A[1...M] >= r, 0 <= A[M+1...N] < l
//A1 + A2 + ... + AN + B = S - M*r, A[1...M] >= 0, 0 <= A[M+1...N] < l
int solve(int N, int M, int S) {
int ret = comb(S + N, N);
for(int i=S;i>=1;i--) {
int del = (solve2(N, M, S, i, i) + MOD - solve2(N, M, S, i, i + 1))%MOD;
ret = (ret + MOD - del)%MOD;
}
return ret;
}
//A1 + A2 + ... + AN + B = S
int main() {
init(); int N, M, L, R;
scanf("%d%d%d%d", &N, &M, &L, &R);
printf("%d\n", (solve(N, M, R) + MOD - solve(N, M, L - 1))%MOD);
}
@details@
比赛时看着 standings 感觉是一道不可做的题,然后考场上一直在想什么 fft 啊之类的。。。
赛后想了想,发现不对啊,这个不应该用组合数来做吗。
然后就想了一个解法,最后跟 editorial 对比发现基本一致。。。
这个题的每一步推导,都透露出满满的套路气息。。。
@atcoder - Japanese Student Championship 2019 Qualification - F@ Candy Retribution的更多相关文章
- @atcoder - Japanese Student Championship 2019 Qualification - E@ Card Collector
目录 @description@ @solution@ @accepted code@ @details@ @description@ N 个卡片放在 H*W 的方格图上,第 i 张卡片的权值为 Ai ...
- [AtCoder] NIKKEI Programming Contest 2019 (暂缺F)
[AtCoder] NIKKEI Programming Contest 2019 本来看见这一场的排名的画风比较正常就来补一下题,但是完全没有发现后两题的AC人数远少于我补的上一份AtCoder ...
- [AtCoder] Yahoo Programming Contest 2019
[AtCoder] Yahoo Programming Contest 2019 很遗憾错过了一场 AtCoder .听说这场是涨分场呢,于是特意来补一下题. A - Anti-Adjacency ...
- Atcoder Tenka1 Programmer Contest 2019
C 签到题,f[i][0/1]表示以i结尾最后一个为白/黑的最小值,转移显然. #include<bits/stdc++.h> using namespace std; ; ]; char ...
- atcoder NIKKEI Programming Contest 2019 E - Weights on Vertices and Edges
题目链接:Weights on Vertices and Edges 题目大意:有一个\(n\)个点\(m\)条边的无向图,点有点权,边有边权,问至少删去多少条边使得对于剩下的每一条边,它所在的联通块 ...
- 【AtCoder】Tenka1 Programmer Contest(C - F)
C - Align 考的时候,我大胆猜了结论,就是一小一大一小一大这么排 证明的话,由于我们总是要加上相邻的最大值而减去最小值,我们就让最大值都保持在前面 如果长度为奇数,要么就是大小大小大,要么是小 ...
- Atcoder Tenka1 Programmer Contest 2019 题解
link 题面真简洁 qaq C Stones 最终一定是连续一段 . 加上连续一段 # .直接枚举断点记录前缀和统计即可. #include<bits/stdc++.h> #define ...
- Atcoder Tenka1 Programmer Contest 2019 E - Polynomial Divisors
题意: 给出一个多项式,问有多少个质数\(p\)使得\(p\;|\;f(x)\),不管\(x\)取何值 思路: 首先所有系数的\(gcd\)的质因子都是可以的. 再考虑一个结论,如果在\(\bmod ...
- Atcoder Tenka1 Programmer Contest 2019 D Three Colors
题意: 有\(n\)个石头,每个石头有权值,可以给它们染'R', 'G', 'B'三种颜色,如下定义一种染色方案为合法方案: 所有石头都染上了一种颜色 令\(R, G, B\)为染了'R', 染了'G ...
随机推荐
- R330 打印机连供墨水红灯常量处理
墨水灯红灯常量,表示墨盒没墨水 1.按红灯,将墨盒移动到右侧空处 2.按住连供顶部的重置小按钮 15秒以上,复位(这个应该是让连供墨盒产生一个另外的墨盒序号,骗打印机换了个新墨盒) 3.按打印机红灯, ...
- C++ std::map用法简介
#include "map" //引入头文件 初始化: std::map <int, std::string> _map1; //初始化 //c++11中引入的,可以直 ...
- angular4 自定义表单验证Validator
表单的验证条件有时候满足不了需求就可以自定义验证 唯一要求返回是ValidatorFn export interface ValidatorFn{ (c:AbstractControl):Valida ...
- Linux下安装docker,更改镜像仓库地址,并部署springboot应用
今天做不成的事,明天也不会做好. 各位同学大家好,随着docker的快速发展,越来越多的人开始使用,一方面随着容器化这个趋势越来越火,docker成为了其中的佼佼者:二来容器化确实降低了运维的门槛,让 ...
- python自动化--批量执行测试之生成报告
一.生成报告 1.先执行一个用例,并生成该用例的报告 # -*- coding: utf-8 -*- from selenium import webdriver from selenium.webd ...
- 【CodeVS】2750 心系南方灾区
2750 心系南方灾区 时间限制: 1 s 空间限制: 2000 KB 题目等级 : 青铜 Bronze 题目描述 Description 现在我国南方正在承受百年不遇的大雪.冻雨灾害.北京市已经开始 ...
- 2019阿里云开年Hi购季基础云产品分会场全攻略!
2019阿里云云上Hi购季活动已经于2月25日正式开启,从已开放的活动页面来看,活动分为三个阶段: 2月25日-3月04日的活动报名阶段.3月04日-3月16日的新购满返+5折抢购阶段.3月16日-3 ...
- CI框架--浅谈前后台区分
谈到CI框架,这是我第二个用到的框架,初步使用过后,眼前一亮.CI框架上手简单.模式明确.适合新手学习框架时入手. 下面给大家讲讲CI框架区分前后台文件的具体做法: 首先在application文件夹 ...
- ubuntn 18 开起ssh 并用root远程登陆
原文:ubuntn 18 开起ssh 并用root远程登陆 版权声明:本文为博主原创文章,随意转载. https://blog.csdn.net/Michel4Liu/article/details/ ...
- Servlet小结(转载)
http://www.iteye.com/topic/766418 1 .首先,什么是Servlet? Servlet是一个Java编写的程序,此程序是在服务器端运行的,是按照Servl ...