【学术篇】SDOI2009 最优图像
又是一道辣鸡卡常数题….
luogu上有些题的时限还是有毒的… 最后也只能靠O2过掉了…
不过给我原题当时的2s我随便过给你看嘛, 哪怕评测姬慢50%都没关系的.. 贴一下codevs的截图…
你看最慢的点也就1.07s…… (毕竟程序自带大常数←_←
好了不吐槽了, 我们来分析一下这道题吧…
其实我当时做的时候(好像还是做学校食堂的那次测试?)并不知道这是一道网络流…
然后就写暴力滚粗…
但据说这是一种非常常见的建图方式.. 我们还是分析题目条件.
我们在网络流里面做到的题目都是求和的, 那么我们就要想办法把Π转换为∑.
转换完之后就可以跑最大费用最大流了.那么怎么转换呢?? 用对数!!!
我们高一的时候学过,log(xy)=log x+log y(底大于0且不等于1), 这样我们就可以建边了.
- 每一行, 每一列作为一个点, 分别放在两边.
- 行和列之间连一条流量为1, 费用为交点的概率的对数的边, 表示这个点最多选一次, 选的话取这个概率.
- 源点向每个行对应的点连流量为这一行的黑像素数, 费用为0的边, 表示这一行要选这么多个.
- 每个列对应的点向汇点连流量为这一列的黑像素数, 费用为0的边, 表示这一列要选这么多个.
样例建图大约就是这个样子(好像还并不是很清楚怎么建嘛) (对数的底我就随便取个e算了)
然后费用取反跑费用流就行了. 据说这个题只能用zkw过, 但我的zkw也没过…
代码:
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
const int N=205;
const int M=23333;
const int INF=0x7f7f7f7f;
inline int gn(int a=0,char c=0){
for(;c<'0'||c>'9';c=getchar());
for(;c>47&&c<58;c=getchar())a=a*10+c-48;return a;
}
int v[N],nxt[M],to[M],fl[M],co[M],tot=1;
void buildedge(int x,int y,int flow,int cost){
to[++tot]=y; nxt[tot]=v[x]; v[x]=tot; fl[tot]=flow; co[tot]=cost;
to[++tot]=x; nxt[tot]=v[y]; v[y]=tot; fl[tot]=0; co[tot]=-cost;
}
int d[N],n,m,s,t,cost,p[N][N],a[N],b[N];
int q[M],H,T,i,j,k;
bool vis[N];
inline bool spfa(int s,int t){
memset(vis,0,sizeof(vis));
memset(d,0x7f,sizeof(d));
d[t]=0; H=0; T=1; vis[t]=1; q[T]=t;
while(H<T){
int x=q[++H]; vis[x]=0;
for(int i=v[x];i;i=nxt[i])
if(fl[i^1]&&d[to[i]]>d[x]-co[i]){
d[to[i]]=d[x]-co[i];
if(!vis[to[i]]) vis[to[i]]=1,q[++T]=to[i];
}
}
return d[s]<INF;
}
int dfs(int x,int mx,int s=0){ vis[x]=1;
if(x==t) return mx; int k;
for(int i=v[x];i;i=nxt[i])
if(!vis[to[i]]&&fl[i]&&d[to[i]]==d[x]-co[i]){
k=::dfs(to[i], mx-s>fl[i]?fl[i]:mx-s);
if(k) cost+=k*co[i],fl[i]-=k,fl[i^1]+=k,s+=k;
if(s==mx) break;
}
return s;
}
int mcmf(int flow=0){
while(::spfa(s, t)){ vis[t]=1;
while(vis[t]){
memset(vis,0,sizeof(vis));
flow+=::dfs(s, INF);
}
} return flow;
}
void findans(){
for(int i=1;i<=n;++i)
for(int j=v[i];j;j=nxt[j])
if(to[j]>n)
p[i][to[j]-n]=!fl[j];
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j)
putchar(48+p[i][j]);
putchar(10);
}
}
int main(){
n=gn(); m=gn(); s=0; t=n+m+1;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j){
int k=gn();
if(k) ::buildedge(i, j+n, 1, (int)(-log2(k)*2333333));
}
for(int i=1;i<=n;++i)
::buildedge(s, i, gn(), 0);
for(int i=1;i<=m;++i)
::buildedge(i+n, t, gn(), 0);
mcmf(); findans();
}
最后, 卡常数是非常不对的一件事情…或者说我该去化验血统了?
【学术篇】SDOI2009 最优图像的更多相关文章
- P2410 [SDOI2009]最优图像 ZKW最大费用最大流
$ \color{#0066ff}{ 题目描述 }$ 小E在好友小W的家中发现一幅神奇的图画,对此颇有兴趣.它可以被看做一个包含N×M个像素的黑白图像,为了方便起见,我们用0表示白色像素,1表示黑色像 ...
- 【学术篇】SDOI2009 SuperGCD
特别说明: 为了避免以后搬家时的麻烦, 这里的文章继续沿用csdn的风格和分类好了~ Emmmm这个题是一道高精度的模板题啊~ 既然是高精度的裸题, 那我们这些懒人当然是选择:用python啦~ 懒癌 ...
- 【学术篇】SDOI2009 学校食堂
传送门~ 题目大意 先分析\((x\ or\ y)-(x\ and\ y)\), 就是\(x\)和\(y\)中存在的1减去\(x\)和\(y\)中相同的1 *那不就是\(x\ xor\ y\)么←_← ...
- SQL Server调优系列基础篇 - 性能调优介绍
前言 关于SQL Server调优系列是一个庞大的内容体系,非一言两语能够分析清楚,本篇先就在SQL 调优中所最常用的查询计划进行解析,力图做好基础的掌握,夯实基本功!而后再谈谈整体的语句调优. 通过 ...
- SQL Server 调优系列基础篇 - 性能调优介绍
前言 关于SQL Server调优系列是一个庞大的内容体系,非一言两语能够分析清楚,本篇先就在SQL 调优中所最常用的查询计划进行解析,力图做好基础的掌握,夯实基本功!而后再谈谈整体的语句调优. 通过 ...
- PHP 性能分析第三篇: 性能调优实战
注意:本文是我们的 PHP 性能分析系列的第三篇,点此阅读 PHP 性能分析第一篇: XHProf & XHGui 介绍 ,或 PHP 性能分析第二篇: 深入研究 XHGui. 在本系列的 ...
- 第三篇、调优之路 Apache调优
1. 简介 在第一篇中整合了apache + tomcat ,利用了apache解析静态文件为tomcat解压.但是在测试机上发现两者性能不足,不能充分利用服务器的性能,该篇中将对apache进行性 ...
- 【学术篇】CF833B TheBakery 分治dp+主席树
题目の传送门~ 题目大意: 将\(n\)个蛋糕分成恰好\(k\)份, 求每份中包含的蛋糕的种类数之和的最大值. 这题有两种做法. 第一种是线段树优化dp, 我还没有考虑. 另一种就是分治+主席树. 然 ...
- 【学术篇】luogu3768 简单的数学题(纯口胡无代码)
真是一道"简单"的数学题呢~ 反演题, 化式子. \[ ans=\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j) \\ =\sum_{i=1}^n\sum_{j ...
随机推荐
- ASP.NET中ajax验证用户名和邮箱是否重复
这个是前台显示的页面代码↓ <%@ Page Language="C#" AutoEventWireup="true" CodeFile="De ...
- 利用OpenFileDialog 获取图片存储到数据库中
private void button1_Click(object sender, EventArgs e) { string fName; ...
- 常用css3属性的ie兼容查看
记录一下关于css3的各种常用属性对ie各版本浏览器的兼容程度: 最低可兼容ie7 最低可兼容ie8 最低可兼容ie9 最低可兼容ie10 position:fixed clip E:first-le ...
- python全栈开放实践第三版第一章的练习题完成情况
练习题: 1.简述编译型与解释型语言的区别,且分别列出你知道哪些语言属于编译型,哪些数以解释型.1 编译型:只须编译一次就可以把源代码编译成机器语言,后面的执行无须重新编译,直接使用之前的编译结果就可 ...
- 如何在react中实现一个倒计时组件
倒计时组件 import React, { Component } from 'react' import $ from 'jquery' import "../../css/spellTE ...
- python的三种特性
1.封装 什么时候用函数? 各个函数之间是独立的且无共用的数据. 什么时候用类? 函数之间是相关的,且有共用的数据,则可以使用类来封装. 所谓的封装: (1)使用构造方法将内容封装到 对象 中. (2 ...
- Tools: geos 使用指南
1. 下载geos 2. 进入VS开发人员命令提示3.依次执行如下命令 >VCVARS32.BAT>cd D:\DevTool\geos-3.7.0>atuogen.bat>n ...
- JAVA SE Download
{ //https://www.oracle.com/technetwork/java/javase/downloads/index.html }
- php面向对象深入理解(二)
一个简单的小程序: 配置 config.ini <?php //项目的根目录 define("ROOT","F:/文件夹的名字/oop/"); //数 ...
- Android中使用占位符
Android中占位符的使用 有些朋友可能会动态的修改Android中strings.xml文件中的值,在这里给大家推荐一种简单的方法. strings.xml中节点是支持占位符的,如下所示: < ...