# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt from sklearn import datasets,manifold def load_data():
'''
加载用于降维的数据
'''
# 使用 scikit-learn 自带的 iris 数据集
iris=datasets.load_iris()
return iris.data,iris.target #局部线性嵌入LLE降维模型
def test_LocallyLinearEmbedding(*data):
X,y=data
# 依次考察降维目标为 4维、3维、2维、1维
for n in [4,3,2,1]:
lle=manifold.LocallyLinearEmbedding(n_components=n)
lle.fit(X)
print('reconstruction_error(n_components=%d) : %s'%(n, lle.reconstruction_error_)) # 产生用于降维的数据集
X,y=load_data()
# 调用 test_LocallyLinearEmbedding
test_LocallyLinearEmbedding(X,y)

def plot_LocallyLinearEmbedding_k(*data):
'''
测试 LocallyLinearEmbedding 中 n_neighbors 参数的影响,其中降维至 2维
'''
X,y=data
# n_neighbors参数的候选值的集合
Ks=[1,5,25,y.size-1] fig=plt.figure()
for i, k in enumerate(Ks):
lle=manifold.LocallyLinearEmbedding(n_components=2,n_neighbors=k)
#原始数据集转换到二维
X_r=lle.fit_transform(X)
## 两行两列,每个单元显示不同 n_neighbors 参数的 LocallyLinearEmbedding 的效果图
ax=fig.add_subplot(2,2,i+1)
# 颜色集合,不同标记的样本染不同的颜色
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2))
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position,0],X_r[position,1],label="target= %d"%label,color=color)
ax.set_xlabel("X[0]")
ax.set_ylabel("X[1]")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("LocallyLinearEmbedding")
plt.show() # 调用 plot_LocallyLinearEmbedding_k
plot_LocallyLinearEmbedding_k(X,y)

def plot_LocallyLinearEmbedding_k_d1(*data):
'''
测试 LocallyLinearEmbedding 中 n_neighbors 参数的影响,其中降维至 1维
'''
X,y=data
Ks=[1,5,25,y.size-1]# n_neighbors参数的候选值的集合 fig=plt.figure()
for i, k in enumerate(Ks):
lle=manifold.LocallyLinearEmbedding(n_components=1,n_neighbors=k)
X_r=lle.fit_transform(X)#原始数据集转换到 1 维 ax=fig.add_subplot(2,2,i+1)## 两行两列,每个单元显示不同 n_neighbors 参数的 LocallyLinearEmbedding 的效果图
colors=((1,0,0),(0,1,0),(0,0,1),(0.5,0.5,0),(0,0.5,0.5),(0.5,0,0.5),
(0.4,0.6,0),(0.6,0.4,0),(0,0.6,0.4),(0.5,0.3,0.2),)# 颜色集合,不同标记的样本染不同的颜色
for label ,color in zip( np.unique(y),colors):
position=y==label
ax.scatter(X_r[position],np.zeros_like(X_r[position]),
label="target= %d"%label,color=color) ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.legend(loc="best")
ax.set_title("k=%d"%k)
plt.suptitle("LocallyLinearEmbedding")
plt.show() # 调用 plot_LocallyLinearEmbedding_k_d1
plot_LocallyLinearEmbedding_k_d1(X,y)

吴裕雄 python 机器学习——局部线性嵌入LLE降维模型的更多相关文章

  1. 吴裕雄 python 机器学习——等度量映射Isomap降维模型

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  2. 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  3. 吴裕雄 python 机器学习——人工神经网络与原始感知机模型

    import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from ...

  4. 吴裕雄 python 机器学习——主成份分析PCA降维

    # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...

  5. 吴裕雄 python 机器学习——多项式贝叶斯分类器MultinomialNB模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,naive_bayes from skl ...

  6. 吴裕雄 python 机器学习——数据预处理二元化OneHotEncoder模型

    from sklearn.preprocessing import OneHotEncoder #数据预处理二元化OneHotEncoder模型 def test_OneHotEncoder(): X ...

  7. 吴裕雄 python 机器学习——数据预处理二元化Binarizer模型

    from sklearn.preprocessing import Binarizer #数据预处理二元化Binarizer模型 def test_Binarizer(): X=[[1,2,3,4,5 ...

  8. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  9. 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

随机推荐

  1. 牛客CSP-S提高组赛前集训营3 赛后总结

    货物收集 二分答案.复杂度\(O(n\log n)\). 货物分组 用费用提前计算的思想,考虑用一个新的箱子来装货物会发生什么. 显然费用会加上后面的所有货物的总重. \(60\)分的\(O(n^2) ...

  2. C++11 新用法

    基于哈希的 map 和 set 简述 基于哈希的 map 和 set ,它们分别叫做 unordered_map, unordered_set .数据分布越平均,性能相较 map 和 set 来说提升 ...

  3. BBR在实时音视频领域的应用

    小议BBR算法 BBR全称Bottleneck Bandwidth and RTT,它是谷歌在2016年推出的全新的网络拥塞控制算法.要说明BBR算法,就不能不提TCP拥塞算法. 传统的TCP拥塞控制 ...

  4. 题解【洛谷P5788】【模板】单调栈

    题面 单调栈模板题. 单调栈与单调队列一样,都是维护了一段区间内的顺序. 然后--这个题用一个栈维护一下贪心就没了. 具体参考这一篇题解 #include <bits/stdc++.h> ...

  5. Linux - Shell - diff

    概述 linux diff 命令 背景 一个 比较文本差异 的工具 老实说, 之前 git/gitlab 上比较代码差异, 我是有点懵逼的 diff 命令, 可以作为理解这些东西的基础 diff 命令 ...

  6. Book: The TimeViz Browser

    website; A visual survey of visualization techniques for time-oriented data. 1. Left pannel ----- fi ...

  7. c#窗体进度条

    c#窗体进度条 //进度条的最大值 ; progressBar1.Maximum = Convert.ToInt32(a); ;i<progressBar1.Maximum;i++) { //进 ...

  8. ServletContext总结(转)

    今天我们学习的是ServletContext的应用. WEB容器在启动时,它会为每个WEB应用程序都创建一个对应的ServletContext对象,它代表当前web应用. ServletConfig对 ...

  9. jvm(n):JVM面试

    Jvm内存结构,一般是面试官对Java虚拟机这块考察的第一问. Java虚拟机的内存结构一般可以从线程共有和线程私有两部分起头作答,然后再详细说明各自的部分,类似树状结构的作答,好处就是思路清晰,面试 ...

  10. AcWing 789. 数的范围 二分+模板

    https://www.acwing.com/problem/content/791/ #include<bits/stdc++.h> using namespace std; ; int ...