数据提取之JSON与JsonPATH

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写。同时也方便了机器进行解析和生成。适用于进行数据交互的场景,比如网站前台与后台之间的数据交互。

JSON和XML的比较可谓不相上下。

JSON

json简单说就是javascript中的对象和数组,所以这两种结构就是对象和数组两种结构,通过这两种结构可以表示各种复杂的结构

  1. 对象:对象在js中表示为{ }括起来的内容,数据结构为 { key:value, key:value, ... }的键值对的结构,在面向对象的语言中,key为对象的属性,value为对应的属性值,所以很容易理解,取值方法为 对象.key 获取属性值,这个属性值的类型可以是数字、字符串、数组、对象这几种。

  2. 数组:数组在js中是中括号[ ]括起来的内容,数据结构为 ["Python", "javascript", "C++", ...],取值方式和所有语言中一样,使用索引获取,字段值的类型可以是 数字、字符串、数组、对象几种。

import json

json模块提供了四个功能:dumpsdumploadsload,用于字符串 和 python数据类型间进行转换。

1. json.loads()

把Json格式字符串解码转换成Python对象 从json到python的类型转化对照如下:

import json

strList = '[1, 2, 3, 4]'

strDict = '{"city": "北京", "name": "大猫"}'

json.loads(strList)
# [1, 2, 3, 4] json.loads(strDict) # json数据自动按Unicode存储
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u732b'}

2. json.dumps()

实现python类型转化为json字符串,返回一个str对象 把一个Python对象编码转换成Json字符串

从python原始类型向json类型的转化对照如下:

import json
import chardet listStr = [1, 2, 3, 4]
tupleStr = (1, 2, 3, 4)
dictStr = {"city": "北京", "name": "大猫"} json.dumps(listStr)
# '[1, 2, 3, 4]'
json.dumps(tupleStr)
# '[1, 2, 3, 4]' # 注意:json.dumps() 序列化时默认使用的ascii编码
# 添加参数 ensure_ascii=False 禁用ascii编码,按utf-8编码
# chardet.detect()返回字典, 其中confidence是检测精确度 json.dumps(dictStr)
# '{"city": "\\u5317\\u4eac", "name": "\\u5927\\u5218"}' chardet.detect(json.dumps(dictStr))
# {'confidence': 1.0, 'encoding': 'ascii'} print json.dumps(dictStr, ensure_ascii=False)
# {"city": "北京", "name": "大刘"} chardet.detect(json.dumps(dictStr, ensure_ascii=False))
# {'confidence': 0.99, 'encoding': 'utf-8'}

chardet是一个非常优秀的编码识别模块,可通过pip安装

3. json.dump()

将Python内置类型序列化为json对象后写入文件

import json

listStr = [{"city": "北京"}, {"name": "大刘"}]
json.dump(listStr, open("listStr.json","w"), ensure_ascii=False) dictStr = {"city": "北京", "name": "大刘"}
json.dump(dictStr, open("dictStr.json","w"), ensure_ascii=False)

4. json.load()

读取文件中json形式的字符串元素 转化成python类型

import json

strList = json.load(open("listStr.json"))
print strList # [{u'city': u'\u5317\u4eac'}, {u'name': u'\u5927\u5218'}] strDict = json.load(open("dictStr.json"))
print strDict
# {u'city': u'\u5317\u4eac', u'name': u'\u5927\u5218'}

JsonPath(了解)

JsonPath 是一种信息抽取类库,是从JSON文档中抽取指定信息的工具,提供多种语言实现版本,包括:Javascript, Python, PHP 和 Java。

JsonPath 对于 JSON 来说,相当于 XPATH 对于 XML。

下载地址:https://pypi.python.org/pypi/jsonpath

安装方法:点击Download URL链接下载jsonpath,解压之后执行python setup.py install

官方文档:http://goessner.net/articles/JsonPath

JsonPath与XPath语法对比:

Json结构清晰,可读性高,复杂度低,非常容易匹配,下表中对应了XPath的用法。

XPath JSONPath 描述
/ $ 根节点
. @ 现行节点
/ .or[] 取子节点
.. n/a 取父节点,Jsonpath未支持
// .. 就是不管位置,选择所有符合条件的条件
* * 匹配所有元素节点
@ n/a 根据属性访问,Json不支持,因为Json是个Key-value递归结构,不需要。
[] [] 迭代器标示(可以在里边做简单的迭代操作,如数组下标,根据内容选值等)
| [,] 支持迭代器中做多选。
[] ?() 支持过滤操作.
n/a () 支持表达式计算
() n/a 分组,JsonPath不支持

示例:

我们以拉勾网城市JSON文件 http://www.lagou.com/lbs/getAllCitySearchLabels.json 为例,获取所有城市。

import requests
import jsonpath
import json
import chardet url = 'http://www.lagou.com/lbs/getAllCitySearchLabels.json'
response = equests.get(url)
html = response.text # 把json格式字符串转换成python对象
jsonobj = json.loads(html) # 从根节点开始,匹配name节点
citylist = jsonpath.jsonpath(jsonobj,'$..name') print citylist
print type(citylist)
fp = open('city.json','w') content = json.dumps(citylist, ensure_ascii=False)
print content fp.write(content.encode('utf-8'))
fp.close()

  

数据提取之JSON与JsonPATH的更多相关文章

  1. 爬虫数据提取之JSON与JsonPATH

    数据提取之JSON与JsonPATH JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.适 ...

  2. 七、数据提取之JSON与JsonPATH

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.适用于进行数据交互的场景,比如网站前台与 ...

  3. python 数据提取之JSON与JsonPATH

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.适用于进行数据交互的场景,比如网站前台与 ...

  4. 9.json和jsonpath

    数据提取之JSON与JsonPATH JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.适 ...

  5. 【python接口自动化】- 使用json及jsonpath转换和提取数据

    前言 ​ JSON(JavaScript Object Notation)是一种轻量级的数据交换格式.它可以让人们很容易的进行阅读和编写,同时也方便了机器进行解析和生成,适用于进行数据交互的场景,比如 ...

  6. jmeter之断言、数据提取器(正则表达式、jsonpath、beanshell)、聚合报告、参数化

    ctx - ( JMeterContext) - gives access to the context vars - ( JMeterVariables) - gives read/write ac ...

  7. 数据提取--JSON

    什么是数据提取? 简单的来说,数据提取就是从响应中获取我们想要的数据的过程 非结构化的数据:html等 结构化数据:json,xml等 处理方法:正则表达式.xpath 处理方法:转化为python数 ...

  8. JSON数据提取

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.JSON在数据交换中起到了一个载体的作用 ...

  9. 爬虫之re数据提取的使用

    本文将业务场景中最常用的几点实例,给大家列举出来,不常见的不再一一赘述.  使用urllib库可以模拟浏览器发送请求获得服务器返回的数据,下一步就是把有用的数据提取出来.数据分为两种形式:结构化和非结 ...

随机推荐

  1. CSS常用小技巧

    1.隐藏overflow滚动条 ::-webkit-scrollbar { display:none } 2.单行文字两端对齐(例:输入框前的label) // 若考虑兼容,文字间要有空格 { tex ...

  2. VMware vSphere Client

    复制虚拟机 在虚拟机关机状态下,选中一个虚拟机,文件 - 导出 - 导出OVF模板,导出成功后,再文件 - 部署OVF模板(修改IP.MAC.主机名称)

  3. 安装postman时遇到“无法定位程序输入点 SetDefaultDllDirectories于动态链接库KERNEL32.dll 上.”的问题

    安装postman时遇到“无法定位程序输入点 SetDefaultDllDirectories于动态链接库KERNEL32.dll 上.”的问题 解决办法: 1.安装系统更新补丁KB2533623,下 ...

  4. JDBC没有导入驱动jar包

  5. 初步自学Java小结

    本周学习Java使我印象最深刻的Java开发环境的安装与设置,通过下载Eclipse IDE for Java Developers初步搭建好了Java开发环境,之后利用视频了解了Java程序的类型及 ...

  6. ARM(哈弗、冯氏结构、总线和IO访问、处理器状态和处理机模式)

    1.哈弗结构与冯氏结构 (1)区别: 是否有独立的存储架构和信号通道. (2)举例: 8086:冯氏结构(相同的存储相同的通道) STM32F103:哈弗结构(不同的存储.通道) 8051:改进的哈弗 ...

  7. 基于约束条件的SQL攻击

    一.背景 今天看了一篇基于约束条件的SQL攻击的文章,感觉非常不错,但亲自实践后又发现了很多问题,虽然利用起来有一定要求,不过作者的思想还是很值得学习的.原文中的主旨思想是利用数据库对空格符的特殊处理 ...

  8. python tkinter模版

    import tkinter import time import threading from tkinter import ttk event = threading.Event() once=0 ...

  9. MyEclipse 安装及激活教程

    一.下载安装MyEclipse 在进行下面的步骤之前,先安装好MyEclipse (10.0.2015版本或更高版本)和JDK,安装完成后暂时不要运行MyEclipse. 二.运行MyEclipse激 ...

  10. Android 开发 ThreadPool(线程池) 总结

    本文是介绍线程池的基础篇. 一.线程池的作用 创建异步线程的弊端: 1.每次new Thread创建对象,导致性能变差. 2.缺乏统一的管理,可能导致无限制的线程运行,严重的后果就是OOM 或者死机. ...