You are given three integers a≤b≤ca≤b≤c .

In one move, you can add +1+1 or −1−1 to any of these integers (i.e. increase or decrease any number by one). You can perform such operation any (possibly, zero) number of times, you can even perform this operation several times with one number. Note that you cannot make non-positive numbers using such operations.

You have to perform the minimum number of such operations in order to obtain three integers A≤B≤CA≤B≤C such that BB is divisible by AA and CC is divisible by BB .

You have to answer tt independent test cases.

Input

The first line of the input contains one integer tt (1≤t≤1001≤t≤100 ) — the number of test cases.

The next tt lines describe test cases. Each test case is given on a separate line as three space-separated integers a,ba,b and cc (1≤a≤b≤c≤1041≤a≤b≤c≤104 ).

Output

For each test case, print the answer. In the first line print resres — the minimum number of operations you have to perform to obtain three integers A≤B≤CA≤B≤C such that BB is divisible by AA and CC is divisible by BB . On the second line print any suitable triple A,BA,B and CC .

Example
Input

 
8
1 2 3
123 321 456
5 10 15
15 18 21
100 100 101
1 22 29
3 19 38
6 30 46
Output

 
1
1 1 3
102
114 228 456
4
4 8 16
6
18 18 18
1
100 100 100
7
1 22 22
2
1 19 38
8
6 24 48
一开始想了半天再加上题目的rating1900+math的标签就以为是数论不敢做了,后来看大佬说是暴力...枚举有两种方式,一种是直接枚举A,B,C(注意里面两重循环 for(int j = i; j <= 15000; j += i)for(int k = j; k <= 15000; k += j)不要写++;一种是枚举倍数 for(k=1;i*j*k<=20000;k++)for(k=1;i*j*k<=20000;k++)。玄学范围看着枚举就行,看似O(n^3)实际上有了剪枝是到不了的。Div3别想的太复杂。
#include <bits/stdc++.h>
int a,b,c;
using namespace std;
int main()
{
int t;
cin>>t;
while(t--)
{
scanf("%d%d%d",&a,&b,&c);
int A,B,C,i,j,k; int mmin=;
int tot;
for(i=;i<=;i++)
{
for(j=;i*j<=;j++)
{
for(k=;i*j*k<=;k++)
{
tot=abs(a-i)+abs(b-j*i)+abs(c-i*j*k);
if(tot<mmin)
{
mmin=tot;
A=i;
B=i*j;
C=i*j*k;
}
}
}
}
cout<<mmin<<endl;
printf("%d %d %d\n",A,B,C);
}
}

Codeforces Round #624 (Div. 3) D. Three Integers的更多相关文章

  1. Codeforces Round #624 (Div. 3)(题解)

    Codeforces Round #624 (Div.3) 题目地址:https://codeforces.ml/contest/1311 B题:WeirdSort 题意:给出含有n个元素的数组a,和 ...

  2. Codeforces Round #624 (Div. 3) C. Perform the Combo(前缀和)

    You want to perform the combo on your opponent in one popular fighting game. The combo is the string ...

  3. Codeforces Round #624 (Div. 3) F. Moving Points 题解

    第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...

  4. Codeforces Round #624 (Div. 3) B. WeirdSort(排序)

    output standard output You are given an array aa of length nn . You are also given a set of distinct ...

  5. Codeforces Round #624 (Div. 3) A. Add Odd or Subtract Even(水题)

    You are given two positive integers aa and bb . In one move, you can change aa in the following way: ...

  6. Codeforces Round #624 (Div. 3)(题解)

    A. Add Odd or Subtract Even 思路: 相同直接为0,如果两数相差为偶数就为2,奇数就为1 #include<iostream> #include<algor ...

  7. 详细讲解Codeforces Round #624 (Div. 3) E. Construct the Binary Tree(构造二叉树)

    题意:给定节点数n和所有节点的深度总和d,问能否构造出这样的二叉树.能,则输出“YES”,并且输出n-1个节点的父节点(节点1为根节点). 题解:n个节点构成的二叉树中,完全(满)二叉树的深度总和最小 ...

  8. 详细讲解Codeforces Round #624 (Div. 3) F. Moving Points

    题意:给定n个点的初始坐标x和速度v(保证n个点的初始坐标互不相同), d(i,j)是第i个和第j个点之间任意某个时刻的最小距离,求出n个点中任意一对点的d(i,j)的总和. 题解:可以理解,两个点中 ...

  9. Codeforces Round #624 (Div. 3)

    A.题意:通过加奇数减偶数的操作从a到b最少需要几步 签到题 #include <algorithm> #include <iostream> #include <cst ...

随机推荐

  1. Lumen跨域问题,PHP CORS Middleware

    前导 本篇文字作为?<「新轮子」PHP CORS (Cross-origin resource sharing),解决 PHP 项目程序设置跨域需求.>的续篇. 简介 什么是 medz/c ...

  2. jsp报错java.io.IOException: Stream closed

    在使用jsp的时候莫名其妙的抛出了这个异常,经过反复检查 去掉了网友们说的jsp使用流未关闭,以及tomcat版本冲突等原因,最后发现是书写格式的原因. 当时使用的代码如下 <jsp:inclu ...

  3. svg 放大缩小后的比例

    function getCoords(evt) { // 计算出当前屏幕与svg的比例    var canvas = document.getElementById("canvase&qu ...

  4. java高精度,大数

    package 高精度幂; import java.math.BigDecimal; import java.util.Scanner; public class Main{ public stati ...

  5. Go源码文件与命令

    Go源码文件 文件类型 命令源码文件 : 声明自己属于main包且包含main函数的源码文件,一个包里边不要有多个命令源码文件,虽然用go install ,go run单独执行命令源码文件没有问题, ...

  6. Java EE 7 API

    学习Java必备资源,下载链接: https://pan.baidu.com/s/1P1xzuoGJCIuZlYBbPSbM_Q 提取码: dtui 复制这段内容后打开百度网盘手机App,操作更方便哦

  7. 题解【洛谷P3478】[POI2008]STA-Station

    题面 设\(dp_i\)表示以\(i\)为根节点时所有节点的深度之和. 首先以 \(1\) 为根求出所有点深度之和\(dp_1\),并预处理每个点的子树大小. 设 \(v\) 是 \(u\) 的孩子, ...

  8. 【15】【有点特殊的dp】 剪绳子

    题目 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m.n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]...k[m] .请问 k[0]k[1]...* ...

  9. 转载:android audio policy

    Audio policy basic:https://www.cnblogs.com/CoderTian/p/5705742.html Set volume flow:https://blog.csd ...

  10. xrdp---远程桌面连接

    xrdp is an Open Source Remote desktop Protocol server, which allows you to RDP to your Linux server ...