思路:  根据矩阵乘法的定义,G中的第i行第j列的元素 ai,j ,对答案的贡献为 ai,j∗ T中第j行的所有元素之和。

    因此我们可以将T中根据每行的和进行排序。第i行的和可以通过公式 (ai^n−1)/(ai−1)直接得出。
    注意考虑 ai=1,ai=0 以及 ai>MOD 的特殊情况即可。还有就是对于除法取模需要用到逆元(费马小定理)

    一开始没注意除法取模 狂WA 12遍也是心累。。。。。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath> using namespace std;
typedef long long LL;
const LL mod = 1e9 + ;
const int maxn = 1e5 + ;
LL b[maxn], ans, a[maxn];
LL n, m;
LL Pow(LL a, LL b)//快速幂
{
LL ans = ;
while (b) {
if (b & ) {
ans *= a;ans %= mod;
}
a *= a;a %= mod;
b >>= ;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
while (cin >> n >> m) {
for (int i = ; i <= m; i++) {
cin >> a[i];
}
sort(a + , a + m + );
for (int i = ; i <= m; i++) {
a[i] = (a[i] % mod + mod) % mod;
if (a[i] == )b[i] = ;
else if (a[i] == )b[i] = n;
else { //费马小定理对除法取模
b[i] = (Pow(a[i], n) - + mod) % mod;
b[i] = b[i] * Pow(a[i] - , mod - ) % mod;
}
}
//以下是求解
ans = ;
LL num = (n*(n + ) / ) % mod;
for (int i = ; i <= m; i++) {
ans = (ans + (num*b[i]) % mod) % mod;
num = (num + n * n) % mod;
}
cout << ans << endl;
}
return ;
}

51nod 范德蒙矩阵的更多相关文章

  1. 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理

    浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...

  2. CF #404 (Div. 2) D. Anton and School - 2 (数论+范德蒙恒等式)

    题意:给你一个由'('和')'组成的字符串,问你有多少个子串,前半部分是由'('组成后半部分由')'组成 思路:枚举这个字符串中的所有'('左括号,它左边的所有'('左括号的个数为num1,它的右边的 ...

  3. bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]

    4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...

  4. Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]

    题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...

  5. Codeforces Round #404 (Div. 2) A,B,C,D,E 暴力,暴力,二分,范德蒙恒等式,树状数组+分块

    题目链接:http://codeforces.com/contest/785 A. Anton and Polyhedrons time limit per test 2 seconds memory ...

  6. CodeForces 785 D Anton and School - 2 范德蒙恒等式

    Anton and School - 2 题解: 枚举每个左括号作为必选的. 那么方案数就应该是下面的 1 , 然后不断化简, 通过范德蒙恒等式 , 可以将其化为一个组合数. 代码: #include ...

  7. 【题解】幼儿园篮球题(范德蒙德卷积+斯特林+NTT)

    [题解]幼儿园篮球题(NTT+范德蒙德卷积+斯特林数) 题目就是要我们求一个式子(听说叫做超几何分布?好牛逼的名字啊) \[ \sum_{i=1}^{S}\dfrac 1 {N \choose n_i ...

  8. 51Nod——T 1113 矩阵快速幂

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1113 基准时间限制:3 秒 空间限制:131072 KB 分值: 40 ...

  9. 51Nod 1084:矩阵取数问题 V2(多维DP)

    1084 矩阵取数问题 V2  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励 ...

随机推荐

  1. PAT天梯赛L3-011 直捣黄龙

    题目链接:点击打开链接 本题是一部战争大片 -- 你需要从己方大本营出发,一路攻城略地杀到敌方大本营.首先时间就是生命,所以你必须选择合适的路径,以最快的速度占领敌方大本营.当这样的路径不唯一时,要求 ...

  2. jQuery图片从下往上滚动效果

    在线演示 本地下载

  3. oracle如何看审计的结果

    1)数据库初始化参数文件中AUDIT_TRAIL=OS时,审计记录存在操作系统的文件中. UNIX系统的话,默认存在“$oracle_home/rdbms/audit/” 目录下. If you ha ...

  4. Linux的 crontab定时任务小记

    编辑任务 crontab -e 查看任务 crontab -l 任务配置基本格式:*   * * * * command分(0-59) 时(0-23) 天(1-31) 月(1-12) 周(0-6,0代 ...

  5. 因为对 Docker 不熟悉建了 N 多个 Nginx

    因为对 Docker 不熟悉建了 N 多个 Nginx 一直不停的 docker run nginx 结果出现无数个 nginx. 然后最原来的 nginx 启动不了了. 使用 docker ps - ...

  6. 【批量添加】-拼接sql字符串 标签: 批量添加 2015-12-13 17:49 2070人阅读 评论(33)

    现在做的一个项目需要用到批量添加,但是封装的底层没有这个方法,所以自食其力,自己来写.我们用的是拼接sql字符串的方法来实现功能. 具体实现流程:首先将需要的数据存储到实体的list中,然后将这个li ...

  7. JQuery------库

    JQuery-------------模块.类库 集成了DOM/BOM/JS的类库 一.查找元素 DOM 10左右 JQuery: 选择器: 筛选: ps:版本: 1.x:兼容性最好.1.12推荐 2 ...

  8. Data Flow-File Read-网络距离

  9. 终端安装opencv

    安装 要想在 notebook 中安装和使用 OpenCV,请打开终端窗口(也被称为 Windows 用户的命令提示符窗口),并使用以下命令通过 conda 安装最新版本 (v3): conda in ...

  10. vscode golang vue配置

    { "files.autoSave": "off", "window.title": "${dirty}${activeEdito ...