题目

三天终于把\(APIO\)做完了

这题还是比较厉害的,如果不知道这是个分块应该就自闭了

考虑一个非常妙的操作,按照操作分块

我们设一个闸值\(S\),把\(S\)个边权修改操作分成一块,把所有的边分成两类,一类是在这个块内被修改过的边,一类是没有被修改过的边

我们把没有被修改过的边按照边权离线,同时把这个块内所有的询问离线,用并查集来维护这张图,只需要保证进行一次询问之前图中只有边权大于等于它的边

进行询问的时候当然还得考虑这个块内被修改过的边的贡献,对于这个块内被修改过但是修改的时间大于当前询问的,我们直接按照原来的权值把它加入并查集;对于修改时间小于询问时间的边,我们把其最后一次被修改的权值加入并查集

这个时候只需要查询一下询问所在联通块大小就好了

我们发现这里的这些操作还需要支持撤回,所以并查集就不能路径压缩了

但是卡卡常就过去了

代码

#include<bits/stdc++.h>
#define re register
#pragma GCC optimize(3)
#pragma GCC optimize("-fcse-skip-blocks")
#define getchar() (S==T&&(T=(S=BB)+fread(BB,1,1<<15,stdin),S==T)?EOF:*S++)
char BB[1<<18],*S=BB,*T=BB;
const int maxn=1e5+5;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct Edge{int u,v,rk,t,o,w;}e[maxn],r[maxn];
struct Ask{int o,x,y,rk;}q[maxn],g[maxn];
inline int cmp(const Edge &A,const Edge &B) {return A.o==B.o?A.w>B.w:A.o<B.o;}
inline int ctp(const Edge &A,const Edge &B) {return A.t<B.t;}
inline int cxp(const Ask &A,const Ask &B) {return A.y>B.y;}
inline int cop(const Edge &A,const Edge &B) {return A.rk<B.rk;}
int n,m,cnt,s,Q,now;
int fa[maxn],sz[maxn],st1[maxn],st2[maxn],f[maxn],top,Ans[maxn],st[maxn],pt,U[maxn],V[maxn];
inline int find(int x) {while(x!=fa[x]) x=fa[x];return x;}
inline void back(int x) {sz[st1[x]]-=sz[st2[x]];fa[st2[x]]=st2[x];}
inline void merge(int x,int y) {
int xx=find(x),yy=find(y);
if(xx==yy) return;
if(sz[xx]<sz[yy]) fa[xx]=yy,sz[yy]+=sz[xx],st1[++top]=yy,st2[top]=xx;
else fa[yy]=xx,sz[xx]+=sz[yy],st1[++top]=xx,st2[top]=yy;
}
inline void calc(int t) {
for(re int i=1;i<=now;i++) {
if(r[i].t>g[t].rk) break;
if(!f[r[i].rk]) st[++pt]=r[i].rk,U[pt]=r[i].u,V[pt]=r[i].v;
f[r[i].rk]=q[r[i].t].y;
}
for(re int i=now;i;--i) {
if(r[i].t<g[t].rk) break;
if(r[i].t>g[t].rk&&!f[r[i].rk]&&r[i].w>=g[t].y)
merge(r[i].u,r[i].v);
}
while(pt) {
if(f[st[pt]]>=g[t].y) merge(U[pt],V[pt]);
f[st[pt]]=0;--pt;
}
Ans[g[t].rk]=sz[find(g[t].x)];
while(top) back(top--);
}
inline void solve(int L,int R) {
if(L>R) return;
int H=0,tot=1;now=0;
for(re int i=1;i<=n;i++) fa[i]=i,sz[i]=1;
for(re int i=L;i<=R;i++)
if(q[i].o==1) e[q[i].x].t=i,e[q[i].x].o=1,r[++now]=e[q[i].x];
else g[++H]=q[i];
std::sort(r+1,r+now+1,ctp);
std::sort(g+1,g+H+1,cxp);std::sort(e+1,e+m+1,cmp);
for(re int i=1;i<=m;i++) {
if(e[i].o) break;
while(tot<=H&&e[i].w<g[tot].y) calc(tot),tot++;
int xx=find(e[i].u),yy=find(e[i].v);
if(xx!=yy) {
if(sz[xx]<=sz[yy]) sz[yy]+=sz[xx],fa[xx]=yy;
else sz[xx]+=sz[yy],fa[yy]=xx;
}
}
while(tot<=H) calc(tot),tot++;
std::sort(e+1,e+m+1,cop);
for(re int i=L;i<=R;i++) if(q[i].o==1) e[q[i].x].o=0,e[q[i].x].w=q[i].y;
}
int main() {
n=read(),m=read();
for(re int i=1;i<=m;i++)
e[i].u=read(),e[i].v=read(),e[i].w=read(),e[i].rk=i;
Q=read();s=3.4*std::sqrt(m);
int l=1;
for(re int i=1;i<=Q;i++) {
q[i].o=read(),q[i].x=read(),q[i].y=read();q[i].rk=i;
if(q[i].o==1) ++cnt;
if(cnt>=s) solve(l,i),cnt=0,l=i+1;
}
solve(l,Q);
for(re int i=1;i<=Q;i++) if(q[i].o==2) printf("%d\n",Ans[i]);
return 0;
}

「APIO 2019」桥梁的更多相关文章

  1. #3145. 「APIO 2019」桥梁

    #3145. 「APIO 2019」桥梁 题目描述 圣彼得堡市内所有水路长度总和约 282 千米,市内水域面积占城市面积的 7%.--来自维基百科 圣彼得堡位于由 \(m\) 座桥梁连接而成的 \(n ...

  2. #3146. 「APIO 2019」路灯

    #3146. 「APIO 2019」路灯 题目描述 一辆自动驾驶的出租车正在 Innopolis 的街道上行驶.该街道上有 \(n + 1\) 个停车站点,它们将街道划分成了 \(n\) 条路段.每一 ...

  3. #3144. 「APIO 2019」奇怪装置

    #3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...

  4. 【LOJ #3144】「APIO 2019」奇怪装置

    题意: 定义将一个\(t\)如下转换成一个二元组: \[ f(t) = \begin{cases} x = (t + \left\lfloor \frac{t}{B} \right \rfloor) ...

  5. 「APIO 2019」路灯

    题目 显然一个熟练的选手应该能一眼看出我们需要维护点对的答案 显然在断开或连上某一条边的时候只会对左右两边联通的点产生贡献,这个拿\(set\)维护一下就好了 那现在的问题就是怎么维护了 考虑一个非常 ...

  6. 「APIO 2019」奇怪装置

    题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...

  7. 「WC 2019」数树

    「WC 2019」数树 一道涨姿势的EGF好题,官方题解我并没有完全看懂,尝试用指数型生成函数和组合意义的角度推了一波.考场上只得了 44 分也暴露了我在数数的一些基本套路上的不足,后面的 \(\ex ...

  8. LOJ#3054. 「HNOI 2019」鱼

    LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...

  9. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

随机推荐

  1. canvas画布导出图片并下载

    近期在学习关于画布知识,关于 画布导出图片, 在导出jpeg格式的图片时,会发现图片背景色变成了黑色,原因是画布透明的地方 默认转成了黑色,可以在绘制画布前设置透明处背景色为白色. // 背景色转换成 ...

  2. 任意两点间的最短路问题(Floyd-Warshall算法)

    /* 任意两点间的最短路问题(Floyd-Warshall算法) */ import java.util.Scanner; public class Main { //图的顶点数,总边数 static ...

  3. php Excel导出功能

    /** * * execl数据导出 */ function exportOrderExcel2($title, $cellName, $data) { //引入核心文件 vendor("PH ...

  4. composer(作曲家)安装php-ml

    刚开始我用的是up5.6版本php命令安装composer 后来使用composer时发现命令行会提示php版本太低 于是我下载了wamp,使用7.1版本的php重新安装了composer,因为php ...

  5. NX二次开发-UDO用户自定义对象(UFUN)【持续完善】

    每当提起UDO总是会让我想起大专毕业那会失业找工作,后来有个宝贵机会去了软件公司上班,拿到了我人生中的第一个NX二次开发项目,一个关于测量汽车前后左右摄像头的项目.当时那个项目就用到了UDO,对于只看 ...

  6. 安装zabbix需求环境

    yum install gcc gcc-c++ make mysql-server mysql-devel libcurl-devel net-snmp-devel php php-ldap php- ...

  7. 探索NDIS HOOK新的实现方法(1)

    NDIS HOOK是专业级防火墙使用的一种拦截技术,NDIS HOOK的重点是如何获得特定协议对应NDIS_PROTOCOL_BLOCK指针,获得了该指针,接下来就可以替换该协议所注册的收发函数,而达 ...

  8. 基于Netty的RPC架构学习笔记(三):netty客户端

    文章目录 举个

  9. hexo next修改代码区主题,修改字体样式,大小

    文章目录 广告 修改代码区主题 站点_config.yml 主题_config.yml 修改字体样式,大小 ps 我自己的方式 广告 本人博客地址:https://mmmmmm.me 源码:https ...

  10. Metasploit 如何使用Exploits(漏洞)

    在Metasploit中选择一个漏洞利用程序将'exploit'和'check'命令添加到msfconsole. msf > use exploit/windows/smb/ms09_050_s ...