\begin{align*}
&\int_0^{\frac{\pi}{3}}{\arccos \left( \frac{1-\cos x}{\text{2}\cos x} \right) dx}=\int_0^{\frac{\pi}{3}}{\text{2}\arctan \sqrt{\frac{\text{3}\cos x-1}{\cos x+1}}dx}
\\
&=\int_0^{\pi}{\text{4}\arctan \sqrt{\frac{\text{3}\cos 2y-1}{\cos 2y+1}}dy}\quad \left( x=2y \right)
\\
&=\int_0^{\frac{\pi}{6}}{\text{4}\arctan \left( \frac{\sqrt{1-\text{3}\sin ^2y}}{\cos y} \right) dy}=\int_0^{\frac{\pi}{6}}{4\left[ \frac{\pi}{2}-\arctan \left( \frac{\cos y}{\sqrt{1-\text{3}\sin ^2y}} \right) \right] dy}
\\
&=\frac{\pi ^2}{3}-4\int_0^{\frac{\pi}{6}}{\arctan \left( \frac{\cos y}{\sqrt{1-\text{3}\sin ^2y}} \right) dy}
\\
&=\frac{\pi ^2}{3}-4\int_0^{\frac{\pi}{6}}{\int_0^1{\frac{\cos y}{\sqrt{1-\text{3}\sin ^2y}}\frac{dt}{1-\left( \frac{1-\sin ^2y}{1-\text{3}\sin ^2y} \right) t^2}dy}}
\\
&=\frac{\pi ^2}{3}-\int_0^{\frac{\pi}{6}}{\int_0^1{\frac{\text{4}\cos y\sqrt{1-\text{3}\sin ^2y}dt}{\left( 1-\text{3}\sin ^2y \right) +\left( 1-\sin ^2y \right) t^2}dy}}
\\
&=\frac{\pi ^2}{3}-\int_0^{\frac{\pi}{3}}{\int_0^1{\frac{4\sqrt{3}\cos ^2wdt}{\text{3}\cos ^2w+\left( 2+\cos ^2w \right) t^2}dw}}\quad \left( \sin w=\sqrt{3}\sin y \right)
\\
&=\frac{\pi ^2}{3}-\int_0^{\frac{\pi}{3}}{\int_0^1{\frac{4\sqrt{3}\sec ^2wdt}{\left[ \left( 3+3t^2 \right) +2t^2\tan ^2w \right] \left( 1+\tan ^2w \right)}dw}}
\\
&=\frac{\pi ^2}{3}-\int_0^{\sqrt{3}}{\int_0^1{\frac{4\sqrt{3}dtds}{\left[ \left( 3+3t^2 \right) +2t^2s^2 \right] \left( 1+s^2 \right)}}}\ \ \left( s=\tan w \right)
\\
&=\frac{\pi ^2}{3}-\int_0^{\sqrt{3}}{\int_0^1{\frac{4\sqrt{3}}{t^2+3}\left( \frac{1}{1+s^2}-\frac{2t^2}{\left( 3t^2+3 \right) +2t^2s^2} \right) dtds}}
\\
&=\frac{\pi ^2}{3}-\int_0^1{\frac{4\sqrt{3}}{t^2+3}\left[ \frac{\pi}{3}-\sqrt{\frac{2t^2}{3t^2+3}}\arctan \left( \sqrt{\frac{2t^2}{t^2+1}} \right) \right] dt}
\\
&=\frac{\pi ^2}{9}+4\sqrt{2}\int_0^1{\frac{t}{\left( t^2+3 \right) \sqrt{t^2+1}}\arctan \left( \frac{t\sqrt{2}}{\sqrt{t^2+1}} \right) dt}
\\
&=\frac{\pi ^2}{9}+\left[ \text{4}\tan ^{-1}\left( \frac{\sqrt{t^2+1}}{\sqrt{2}} \right) \tan ^{-1}\left( \frac{t\sqrt{2}}{\sqrt{t^2+1}} \right) \right] _{0}^{1}-4\sqrt{2}\int_0^1{\frac{1}{\left( 3t^2+1 \right) \sqrt{t^2+1}}}\tan ^{-1}\left( \frac{\sqrt{t^2+1}}{\sqrt{2}} \right) dt
\\
&=\frac{13\pi ^2}{36}-4\sqrt{2}\int_0^1{\frac{1}{\left( 3t^2+1 \right) \sqrt{t^2+1}}\tan ^{-1}\left( \frac{\sqrt{t^2+1}}{\sqrt{2}} \right) dt}
\\
&=\frac{5\pi ^2}{36}-\int_0^1{\frac{4}{3t^2+1}\int_0^1{\frac{1}{1+\left( \frac{t^2+1}{2} \right) u^2}}dudt}
\\
&=\frac{13\pi ^2}{36}-4\int_0^1{\int_0^1{\frac{1}{u^2+3}\left[ \frac{1}{t^2+\frac{1}{3}}-\frac{1}{t^2+\frac{u^2+2}{u^2}} \right] dudt}}
\\
&=\frac{5\pi ^2}{36}+4\int_0^1{\frac{u}{\left( u^2+3 \right) \sqrt{u^2+2}}\tan ^{-1}\left( \frac{u}{\sqrt{u^2+2}} \right) du}
\\
&=\frac{5\pi ^2}{36}+4\left[ \tan ^{-1}\sqrt{u^2+2}\tan ^{-1}\left( \frac{u}{\sqrt{u^2+2}} \right) \right] _{0}^{1}-4\int_0^1{\frac{\tan ^{-1}\sqrt{u^2+2}}{\left( u^2+1 \right) \sqrt{u^2+2}}du}
\\
&=\frac{13\pi ^2}{36}-4\int_0^1{\frac{\tan ^{-1}\sqrt{u^2+2}}{\left( u^2+1 \right) \sqrt{u^2+2}}du}=\frac{13\pi ^2}{36}-\frac{5\pi ^2}{24}=\frac{11\pi ^2}{72}.
\end{align*}

Coxeter积分计算的更多相关文章

  1. MCMC 、抽样算法与软件实现

    一.MCMC 简介 1. Monte Carlo 蒙特卡洛 蒙特卡洛方法(Monte Carlo)是一种通过特定分布下的随机数(或伪随机数)进行模拟的方法.典型的例子有蒲丰投针.定积分计算等等,其基础 ...

  2. OPEN CASCADE Multiple Variable Function

    OPEN CASCADE Multiple Variable Function eryar@163.com Abstract. Multiple variable function with grad ...

  3. OpenCASCADE Curve Length Calculation

    OpenCASCADE Curve Length Calculation eryar@163.com Abstract. The natural parametric equations of a c ...

  4. 关于opencv中人脸识别主函数的部分注释详解。

    近段时间在搞opencv的视频人脸识别,无奈自带的分类器的准确度,实在是不怎么样,但又能怎样呢?自己又研究不清楚各大类检测算法. 正所谓,功能是由函数完成的,于是自己便看cvHaarDetectObj ...

  5. 第1章 重构,第一个案例(3):运用多态取代switch

    3. 运用多态取代与价格相关的条件逻辑 3.1 switch和“常客积分”代码的再次搬迁 (1)switch:最好不要在另一个对象的属性上运用switch语句 switch(getMovie().ge ...

  6. 第1章 重构,第一个案例(2):分解并重组statement函数

    2. 分解并重组statement (1)提炼switch语句到独立函数(amountFor)和注意事项. ①先找出函数内的局部变量和参数:each和thisAmount,前者在switch语句内未被 ...

  7. 从Elo Rating System谈到层次分析法

    1. Elo Rating System Elo Rating System对于很多人来说比较陌生,根据wikipedia上的解释:Elo评分系统是一种用于计算对抗比赛(例如象棋对弈)中对手双方技能水 ...

  8. [转] - MC、MC、MCMC简述

    贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇 ...

  9. nVIDIA SDK White Paper ----Vertex Texture Fetch Water

    http://blog.csdn.net/soilwork/article/details/713842 nVIDIA SDK White Paper ----Vertex Texture Fetch ...

随机推荐

  1. Linux运维---1.Ceph分布式存储架构及工作原理

    Ceph理论 Ceph 简介 Ceph 是一个开源项目,它提供软件定义的.统一的存储解决方案 .Ceph 是一个具有高性能.高度可伸缩性.可大规模扩展并且无单点故障的分布式存储系统 . Ceph 是软 ...

  2. SAP 对HU做转库操作,系统报错 - 系统状态HUAS是活动的 - 分析

    SAP 对HU做转库操作,系统报错 - 系统状态HUAS是活动的 - 分析 近日收到业务团队报的问题,说是对某个HU做转库时候,系统报错.如下图示: HU里有是三个序列号, 1191111034011 ...

  3. Linux上安装软件

    Linux发行版的两大系列 debian:代表的比如Ubuntu,软件包管理工具apt.apt-get.dpkg,软件包名.deb redhat:代表的比如CentOS(所以在VMware上安装Cen ...

  4. Policy-based Approach(基于策略的方法)

    step 1:Neural Network as Actor step 2:goodness of function(训练一些Actor) 是一个序列,包含T个状态s.行为a.奖励s.代表某一次的开始 ...

  5. 常用类String的总结

    /* String:字符串,使用一对""引起来表示. 1.String声明为final的,不可被继承 2.String实现了Serializable接口:表示字符串是支持序列化的. ...

  6. 关于js获取元素在屏幕中的位置的方法

    针对我们获取元素在页面中的位置的问题,我们还是用老师一峰老师的方法来解决吧 下面上HTML代码 <div class="left_footer"> <p data ...

  7. sqldeveloper更改语言设定

    \sqldeveloper\ide\bin\ide.conf   添加下面的 日语 AddVMOption -Duser.language=jaAddVMOption -Duser.country=J ...

  8. Bash脚本编程学习笔记06:条件结构体

    简介 在bash脚本编程中,条件结构体使用if语句和case语句两种句式. if语句 单分支if语句 if TEST; then CMD fi TEST:条件判断,多数情况下可使用test命令来实现, ...

  9. 【Java】基于RXTX的Java串口通信

    本篇内容参考转载自https://blog.csdn.net/kong_gu_you_lan/article/details/80589859 环境搭建 下载地址:http://fizzed.com/ ...

  10. c#---out参数

    一个方法有多个返回值时,返回值类型相同可以返回一个数组 static void Main(string[] args) { , , , , , , , , , }; int[] result = Ge ...