Coxeter积分计算
\begin{align*}
&\int_0^{\frac{\pi}{3}}{\arccos \left( \frac{1-\cos x}{\text{2}\cos x} \right) dx}=\int_0^{\frac{\pi}{3}}{\text{2}\arctan \sqrt{\frac{\text{3}\cos x-1}{\cos x+1}}dx}
\\
&=\int_0^{\pi}{\text{4}\arctan \sqrt{\frac{\text{3}\cos 2y-1}{\cos 2y+1}}dy}\quad \left( x=2y \right)
\\
&=\int_0^{\frac{\pi}{6}}{\text{4}\arctan \left( \frac{\sqrt{1-\text{3}\sin ^2y}}{\cos y} \right) dy}=\int_0^{\frac{\pi}{6}}{4\left[ \frac{\pi}{2}-\arctan \left( \frac{\cos y}{\sqrt{1-\text{3}\sin ^2y}} \right) \right] dy}
\\
&=\frac{\pi ^2}{3}-4\int_0^{\frac{\pi}{6}}{\arctan \left( \frac{\cos y}{\sqrt{1-\text{3}\sin ^2y}} \right) dy}
\\
&=\frac{\pi ^2}{3}-4\int_0^{\frac{\pi}{6}}{\int_0^1{\frac{\cos y}{\sqrt{1-\text{3}\sin ^2y}}\frac{dt}{1-\left( \frac{1-\sin ^2y}{1-\text{3}\sin ^2y} \right) t^2}dy}}
\\
&=\frac{\pi ^2}{3}-\int_0^{\frac{\pi}{6}}{\int_0^1{\frac{\text{4}\cos y\sqrt{1-\text{3}\sin ^2y}dt}{\left( 1-\text{3}\sin ^2y \right) +\left( 1-\sin ^2y \right) t^2}dy}}
\\
&=\frac{\pi ^2}{3}-\int_0^{\frac{\pi}{3}}{\int_0^1{\frac{4\sqrt{3}\cos ^2wdt}{\text{3}\cos ^2w+\left( 2+\cos ^2w \right) t^2}dw}}\quad \left( \sin w=\sqrt{3}\sin y \right)
\\
&=\frac{\pi ^2}{3}-\int_0^{\frac{\pi}{3}}{\int_0^1{\frac{4\sqrt{3}\sec ^2wdt}{\left[ \left( 3+3t^2 \right) +2t^2\tan ^2w \right] \left( 1+\tan ^2w \right)}dw}}
\\
&=\frac{\pi ^2}{3}-\int_0^{\sqrt{3}}{\int_0^1{\frac{4\sqrt{3}dtds}{\left[ \left( 3+3t^2 \right) +2t^2s^2 \right] \left( 1+s^2 \right)}}}\ \ \left( s=\tan w \right)
\\
&=\frac{\pi ^2}{3}-\int_0^{\sqrt{3}}{\int_0^1{\frac{4\sqrt{3}}{t^2+3}\left( \frac{1}{1+s^2}-\frac{2t^2}{\left( 3t^2+3 \right) +2t^2s^2} \right) dtds}}
\\
&=\frac{\pi ^2}{3}-\int_0^1{\frac{4\sqrt{3}}{t^2+3}\left[ \frac{\pi}{3}-\sqrt{\frac{2t^2}{3t^2+3}}\arctan \left( \sqrt{\frac{2t^2}{t^2+1}} \right) \right] dt}
\\
&=\frac{\pi ^2}{9}+4\sqrt{2}\int_0^1{\frac{t}{\left( t^2+3 \right) \sqrt{t^2+1}}\arctan \left( \frac{t\sqrt{2}}{\sqrt{t^2+1}} \right) dt}
\\
&=\frac{\pi ^2}{9}+\left[ \text{4}\tan ^{-1}\left( \frac{\sqrt{t^2+1}}{\sqrt{2}} \right) \tan ^{-1}\left( \frac{t\sqrt{2}}{\sqrt{t^2+1}} \right) \right] _{0}^{1}-4\sqrt{2}\int_0^1{\frac{1}{\left( 3t^2+1 \right) \sqrt{t^2+1}}}\tan ^{-1}\left( \frac{\sqrt{t^2+1}}{\sqrt{2}} \right) dt
\\
&=\frac{13\pi ^2}{36}-4\sqrt{2}\int_0^1{\frac{1}{\left( 3t^2+1 \right) \sqrt{t^2+1}}\tan ^{-1}\left( \frac{\sqrt{t^2+1}}{\sqrt{2}} \right) dt}
\\
&=\frac{5\pi ^2}{36}-\int_0^1{\frac{4}{3t^2+1}\int_0^1{\frac{1}{1+\left( \frac{t^2+1}{2} \right) u^2}}dudt}
\\
&=\frac{13\pi ^2}{36}-4\int_0^1{\int_0^1{\frac{1}{u^2+3}\left[ \frac{1}{t^2+\frac{1}{3}}-\frac{1}{t^2+\frac{u^2+2}{u^2}} \right] dudt}}
\\
&=\frac{5\pi ^2}{36}+4\int_0^1{\frac{u}{\left( u^2+3 \right) \sqrt{u^2+2}}\tan ^{-1}\left( \frac{u}{\sqrt{u^2+2}} \right) du}
\\
&=\frac{5\pi ^2}{36}+4\left[ \tan ^{-1}\sqrt{u^2+2}\tan ^{-1}\left( \frac{u}{\sqrt{u^2+2}} \right) \right] _{0}^{1}-4\int_0^1{\frac{\tan ^{-1}\sqrt{u^2+2}}{\left( u^2+1 \right) \sqrt{u^2+2}}du}
\\
&=\frac{13\pi ^2}{36}-4\int_0^1{\frac{\tan ^{-1}\sqrt{u^2+2}}{\left( u^2+1 \right) \sqrt{u^2+2}}du}=\frac{13\pi ^2}{36}-\frac{5\pi ^2}{24}=\frac{11\pi ^2}{72}.
\end{align*}
Coxeter积分计算的更多相关文章
- MCMC 、抽样算法与软件实现
一.MCMC 简介 1. Monte Carlo 蒙特卡洛 蒙特卡洛方法(Monte Carlo)是一种通过特定分布下的随机数(或伪随机数)进行模拟的方法.典型的例子有蒲丰投针.定积分计算等等,其基础 ...
- OPEN CASCADE Multiple Variable Function
OPEN CASCADE Multiple Variable Function eryar@163.com Abstract. Multiple variable function with grad ...
- OpenCASCADE Curve Length Calculation
OpenCASCADE Curve Length Calculation eryar@163.com Abstract. The natural parametric equations of a c ...
- 关于opencv中人脸识别主函数的部分注释详解。
近段时间在搞opencv的视频人脸识别,无奈自带的分类器的准确度,实在是不怎么样,但又能怎样呢?自己又研究不清楚各大类检测算法. 正所谓,功能是由函数完成的,于是自己便看cvHaarDetectObj ...
- 第1章 重构,第一个案例(3):运用多态取代switch
3. 运用多态取代与价格相关的条件逻辑 3.1 switch和“常客积分”代码的再次搬迁 (1)switch:最好不要在另一个对象的属性上运用switch语句 switch(getMovie().ge ...
- 第1章 重构,第一个案例(2):分解并重组statement函数
2. 分解并重组statement (1)提炼switch语句到独立函数(amountFor)和注意事项. ①先找出函数内的局部变量和参数:each和thisAmount,前者在switch语句内未被 ...
- 从Elo Rating System谈到层次分析法
1. Elo Rating System Elo Rating System对于很多人来说比较陌生,根据wikipedia上的解释:Elo评分系统是一种用于计算对抗比赛(例如象棋对弈)中对手双方技能水 ...
- [转] - MC、MC、MCMC简述
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇 ...
- nVIDIA SDK White Paper ----Vertex Texture Fetch Water
http://blog.csdn.net/soilwork/article/details/713842 nVIDIA SDK White Paper ----Vertex Texture Fetch ...
随机推荐
- ElasticSearch集群-Windows
概述 ES集群是一个P2类型的分布式系统,除了集群状态管理以外,其他所有的请求都可以发送到集群内任意一台节点上,这个节点可以自己找到需要转发给哪些节点,并且直接跟这些节点通信.所以,从网络架构及服务配 ...
- Arm开发板+Qt学习之路-multiple definition of
问题描述:在一个头文件a.h中定义一些变量x,在其他.c文件中(b.c,c.c)要用到.用一般的全局变量的方法,编译时总是提示error:multiple definition of x 问题分析:o ...
- JAVA架构之单点登录 任务调度 权限管理 性能优化大型项目实战
单点登录SSO(Single Sign On)说得简单点就是在一个多系统共存的环境下,用户在一处登录后,就不用在其他系统中登录,也就是用户的一次登录能得到其他所有系统的信任.单点登录在大型网站里使用得 ...
- Java连载89-SorteSet、Comparable接口
一. SortedSet集合直接举例 package com.bjpowernode.java_learning; import java.util.*; /** * java.util.Set * ...
- ES6 - 基础学习(5): 数值扩展
二进制和八进制数值表示法 ES6提供了二进制和八进制数值的新写法,分别前缀 0b(或0B). 0o(或0O)然后跟上二进制.八进制值即可. 二进制(Binary)表示法新写法:前缀 0b 或 0B. ...
- C++实现一个简单的双栈队列
双栈队列的原理是用两个栈结构模拟一个队列, 一个栈A模拟队尾, 入队的元素全部压入此栈, 另一个栈B模拟队首, 出队时将栈A的元素弹入栈B, 将栈B的栈顶元素弹出 此结构类似汉诺塔, 非常经典, 这里 ...
- Linux 文件和目录操作命令(一)
1.cd (change directory)切换到指定目录 - 返回上次目录 .. 返回上层目录 回车 返回主目录 / 根目录 2.cp (copy)复制文件或目录 -r -R 递归复制该目录及其子 ...
- Zabbix3.4使用详解
zabbix-基础 第1章 关于zabbix 1.1 为什么要使用监控 1.对系统不间断实时监控2.实时反馈系统当前状态3.保证服务可靠性安全性4.保证业务持续稳定运行 1.2 如何进行监控 比如我们 ...
- PHP0018:PHP 图像处理
- Gird(2)
目录 grid 布局(2) grid区域属性 网格线名称 grid-template-areas 属性 grid-auto-flow 容器内子元素的属性 grid 布局(2) grid区域属性 网格线 ...