【题意分析】

  本题中,x被称为反质数,当且仅当没有任意一个严格小于x的正整数的约数个数大于x的约数个数。求不超过N的最大反质数。

【解题思路】

  数据范围中最大的N=2*109

  首先可以证明,不超过N的反质数不会拥有9个以上的不同质因数。因为2*3*5*7*11*13*17*19*23*29=6469693230>6*109>N。

  设某数n=∏piki(pi<pi+1),则其约数个数g(n)=∏(ki+1)。(因为每个质数对约数个数的贡献是相互独立的,质数pi的可能选择方案数为(ki+1),所以可以用乘法原理乘起来)。

  显然,对于相同的顺序序列k,选择越小的pi越优,于是最优选择方案就是选择前9个质因数。

  于是暴力枚举的状态数为∏[logpN],则其至多为[log2N]*[log3N]*[log5N]*[log7N]*[log11N]*[log13N]*[log17N]*[log19N]*[log23N]=3779758080。

  显然直接暴力是无法过的,于是需要一些鲁(吉)棒(丽)或玄(松)学(爷)优化。

  所谓鲁棒优化,就是打表。。先把所有的反质数用上面这个爆搜打出来存在表里,然后二分查找即可。

  打表做法的可行性得益于反质数个数的增长极其缓慢,105的数据范围中只有30个反质数,从下图不难看出。

  玄学优化呢,有两种方法:

•方法一:考虑对ki的枚举进行优化。一种朴素的想法是同一个素因数的个数过多一定不利于让答案最优,而且越大的质因数个数应当越少,于是可以面向数据调参,限制ki枚举的上限。

•方法二:部分记忆化,f[i][j]表示j的乘积分配给第i个开始的质数最大能达到的约数个数,然后可以对超出记忆化范围的搜索做下界减枝。

  复杂度O(松)。

【参考代码】

  然而当时这题我只用了玄学优化方法一的弱化版,不知为什么就0ms过了?!

  可能有更加紧确的复杂度分析或者bz的数据有毒。。无论是哪一点请读者指出,不胜感激。

 #include<cstdio>
#define REP(I,start,end) for(int I=start;I<=end;I++)
const int prime[]={,,,,,,,,,,,,,,,};
long long maxsum, bestnum, n;
void getantiprime(long long num, long long k,long long sum,int limit)
{
int i;
long long temp;
if(sum>maxsum)
{
maxsum=sum;
bestnum=num;
}
if(sum==maxsum&&bestnum>num)
bestnum=num;
if(k>)
return;
temp=num;
REP(i,,limit)
{
if(temp*prime[k]>n)
break;
temp*=prime[k];
getantiprime(temp,k+,sum*(i+),i);
}
}
int main()
{
scanf("%lld",&n);
getantiprime(,,,);
printf("%lld\n",bestnum);
return ;
}

bzoj1053题解的更多相关文章

  1. BZOJ1053:[HAOI2007]反素数——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1053 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满 ...

  2. BZOJ1053 [HAOI2007]反素数ant 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...

  3. 【BZOJ1053】[HAOI2007]反素数(搜索)

    [BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...

  4. 【BZOJ1053】[HAOI2007]反素数

    [BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...

  5. 【BZOJ1053】[HAOI2007]反素数ant 暴力

    [BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...

  6. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  7. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  8. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  9. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

随机推荐

  1. input | button | textarea 元素的checked, disabled,hidden属性控制

    这三种元素涉及到的checked, disabled,hidden属性的控制方法如下 一.attribute方法: //以下3行,都会影响HTML的( checked | disabled | hid ...

  2. master挂了的话pm2怎么处理 使用pm2方便开启node集群模式

    本文为转载 Introduction As you would probably know, Node.js is a platform built on Chrome's JavaScript ru ...

  3. 友善之臂arm9、 smart210监控版本,烧写系统

    第一次接触嵌入式开发,就拿210练手了,第一天折腾,先烧系统. 准备:板子,8GB或者以上的SD卡,网上找下minitools以及系统小红帽,Android或者ubuntu,debian都可以.[ub ...

  4. Clickhouse集群部署

    1.集群节点信息 10.12.110.201 ch201 10.12.110.202 ch202 10.12.110.203 ch203 2. 搭建一个zookeeper集群 在这三个节点搭建一个zo ...

  5. SQL 按关键字排序

    SQL ORDER BY Keyword(按关键字排序) ORDER BY 关键字用于对结果集进行排序. SQL ORDER BY 关键字 ORDER BY 关键字用于按升序或降序对结果集进行排序. ...

  6. CentOS 7.2 安装MySQL 5.7

    CentOS 7之后的版本yum的默认源中使用MariaDB替代原先MySQL,因此安装方式较为以往有一些改变: 下载mysql的源 wget http://dev.mysql.com/get/mys ...

  7. BZOJ 3328: PYXFIB 解题报告

    BZOJ 3328: PYXFIB 题意 给定\(n,p,k(1\le n\le 10^{18},1\le k\le 20000,1\le p\le 10^9,p \ is \ prime,k|(p- ...

  8. NOIp2018集训test-10-21 (联考六day1)

    今天被高一狂踩,两个手抖,t1一个1写成2,t3一个+=写成=,所谓失之毫厘谬以千里,直接丢了50分. 完全背包 看到背包体积如此之大物品体积如此之小容易很想到贪心,肯定要先加很多很多的性价比最高的最 ...

  9. 2019 wannafly winter camp day1-4代码库

    目录 day1 F div1 爬爬爬山 (最短路) B div2 吃豆豆 (dp) J div2 夺宝奇兵(暴力) J div1 夺宝奇兵 (权值线段树) C div1 拆拆拆数 E div1 流流流 ...

  10. ASP.NET Core学习——3

    中间件 中间件是用于组成应用程序管道来处理请求和相应的组件.管道内的每一个组件都可以选择是否将请求交给下一个组件,并在管道中调用下一个组件之前和之后执行某些操作.请求委托被用来建立请求管道,请求委托处 ...