/*
二分答案,判mid是否合法
如何判断:如果是在直线上,那么遍历匹配即可
现在在环上,即既可以向前匹配也可以向后匹配,那么将环拆开,扩展成三倍 显然a和b的匹配边是不可能交叉的,因为交叉必定没有不交叉优
hall定理:二分图两个点集A,B,连续一段A的点对应连续一段B的点的 充要条件是 这些点对的匹配边之间不交叉
重要推论:二部图G中的两部分顶点组成的集合分别为X,Y, 若|X|=|Y|,
且G中有一组无公共端点的边,一端恰好组成X中的点,一端恰好组成Y中的点,则称二部图G中存在完美匹配 有了这个定理,就可以用在判定上:a的点集对应b点集的连续一段,即b的n个点也是连续的,因为之前已经确定匹配边不交叉
先求出a[1]的范围[a[1]-mid,a[1]+mid]对应的能控制的b数组的范围[l1,r1]
那么a[2]的控制范围要和[l1+1,r1+1]交叉得到[l2,r2]
那么a[3]的控制范围要和[l2+1,r2+1]交叉得到[l3,r3]
...依次类推

可以这个区间长度只会减小不会变大
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 200005
long long n,L,a[maxn],b[maxn<<],c[maxn],m; int judge(int mid){//a[i]的控制区间是[a[i]-mid,a[i]+mid]
int l=,r=m;
for(int i=;i<=n;i++){
while(a[i]-mid>b[l])
++l;
while(a[i]+mid<b[r])
--r;
if(l>r)return ;
++l,++r;
}
return ;
} int main(){
cin>>n>>L;
for(int i=;i<=n;i++)cin>>a[i];
for(int i=;i<=n;i++)cin>>c[i];
sort(c+,c++n);sort(a+,a++n); for(int i=;i<=n;i++)b[i]=c[i]-L;
for(int i=;i<=n;i++)b[i+n]=c[i];
for(int i=;i<=n;i++)b[i+*n]=c[i]+L;
m=*n; int l=,r=L,ans,mid;
while(l<=r){
mid=l+r>>;
if(judge(mid))
ans=mid,r=mid-;
else l=mid+;
}
cout<<ans<<'\n';
}

二分图hall定理应用+二分+双指针——cf981F(好题)的更多相关文章

  1. bzoj3693: 圆桌会议 二分图 hall定理

    目录 题目链接 题解 代码 题目链接 bzoj3693: 圆桌会议 题解 对与每个人构建二分,问题化为时候有一个匹配取了所有的人 Hall定理--对于任意的二分图G,G的两个部分为X={x1,x2,- ...

  2. 【CF981F】Round Marriage(二分答案,二分图匹配,Hall定理)

    [CF981F]Round Marriage(二分答案,二分图匹配,Hall定理) 题面 CF 洛谷 题解 很明显需要二分. 二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理. 那么如果 ...

  3. 【CF981F】Round Marriage(二分答案,hall定理)

    传送门 题意: 给出一个长度为\(L\)的环,标号从\(0\)到\(L-1\). 之后给出\(n\)个新郎,\(n\)个新娘离起点的距离. 现在新郎.新娘要一一配对,但显然每一对新人的产生都会走一定的 ...

  4. CF981F 二分+Hall定理

    对于一个二分的答案 假设存在一个点集使得不满足Hall定理 题中给定的信息说明 左边每个点对应的右边点是一个区间 如果当前点集对应的右边区间是若干个不相交的区间组成的话说明我们还可以找到一个更小的点集 ...

  5. Hall定理 二分图完美匹配

    充分性证明就先咕了,因为楼主太弱了,有一部分没看懂 霍尔定理内容 二分图G中的两部分顶点组成的集合分别为X, Y(假设有\(\lvert X \rvert \leq \lvert Y \rvert\) ...

  6. Card Collector AtCoder - 5168(二分图匹配的HALL定理)

    题意: 给定一个H行W列的矩阵,在矩阵的格点上放带权值的卡片(一个点上能放多张). 现在从每行每列各拿走一张卡片(没有可以不拿),求可以拿到的最大权值. 卡片数N<=1e5,H,W<=1e ...

  7. ARC106E-Medals【hall定理,高维前缀和】

    正题 题目链接:https://atcoder.jp/contests/arc106/tasks/arc106_e 题目大意 \(n\)个员工,第\(i\)个在\([1,A_i]\)工作,\([A_i ...

  8. Codeforces 338E - Optimize!(Hall 定理+线段树)

    题面传送门 首先 \(b_i\) 的顺序肯定不会影响匹配,故我们可以直接将 \(b\) 数组从小到大排个序. 我们考虑分析一下什么样的长度为 \(m\) 的数组 \(a_1,a_2,\dots,a_m ...

  9. TCO 2015 1A Hard.Revmatching(Hall定理)

    \(Description\) 给定一个\(n\)个点的二分图,每条边有边权.求一个边权最小的边集,使得删除该边集后不存在完备匹配. \(n\leq20\). \(Solution\) 设点集为\(S ...

随机推荐

  1. Python文件路径操作

    print(os.environ.get('HOME')) # 打印`HOME`这个环境变量 /Users/<> file_path = os.environ.get('HOME') + ...

  2. vs code的简单插件

    Auto Close Tag VSCode Color Info Mithril Emmet support for VS Code Open HTML in Default Browser open ...

  3. 用记事本和Eclipse编写Java程序

    JRE(Java Runtime Environment    Java运行环境) 包括Java虚拟机(JVM Java Virtual Machine)和Java程序所需的核心类库等,如果想要运行一 ...

  4. luoguP1290 欧几里德的游戏 [博弈论]

    题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...

  5. bzoj1066题解

    [解题思路] 考虑拆点,把每根石柱拆成两个点,具体可以理解为石柱底部和石柱顶部,能爬到石柱顶部的蜥蜴只有有限只,而且蜥蜴只有爬到了石柱顶部才能跳到其他石柱的底部. 这样,考虑如下建图: 将每个有蜥蜴的 ...

  6. C语言新手写扫雷攻略1

    工欲善其事,必先利其器,首先要准备好开发环境,既然是C语言,那就不是WinAPI的扫雷,就是纯的C语言开发,但是以前的C都是TC开发的,现在用肯定是过时很久了,但是也是有解决办法的,某些大神开发出Ea ...

  7. ES数据导入导出

    ES数据导入导出   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...

  8. Installing GCC 简单方法

    Installing GCC This page is intended to offer guidance to avoid some common problems when installing ...

  9. jquery中的ajax请求用法以及参数详情

    url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. type: 要求为String类型的参数,请求方式(post或get)默认为get.注意其他http请求方法,例如put和 ...

  10. 剑指offer——59二叉搜索树的第k大节点

    题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8)    中,按结点数值大小顺序第三小结点的值为4.   题解: 考察的就是中序遍历 不过注意进行剪枝 cl ...