Nov 11,2019 ~ Nov 17,2019

Algorithm

本周来介绍快速求一个数字n次方的余数。

理论基础

我们先定义运算$ x \bmod p = r \(与\) x \equiv r \pmod p \(的含义是一样的。若\) p = 5 $,则可以将所有整数划分到5个不相交的集合里,具体如下:

\[\left\{\begin{matrix}
& \{\dots -10, -5, 0, 5, 10 \dots \} \bmod 5 = 0 & \\
& \{\dots -9, -4, 1, 6, 11 \dots \} \bmod 5 = 1 & \\
& \{\dots -8, -3, 2, 7, 12 \dots \} \bmod 5 = 2 & \\
& \{\dots -7, -2, 3, 8, 13 \dots \} \bmod 5 = 3 & \\
& \{\dots -6, -1, 4, 9, 14 \dots \} \bmod 5 = 4 & \\
\end{matrix}\right.
\]

可能有人不懂为什么\(-4 \bmod 5 = 1\),我来解释一下,因为$ -4 = 5 \times (-1) + 1 \(,故\) -4 \div 5 = -0.8 = -1 \cdots 1 \(。因此\)-4 \bmod 5 = 1$

那么根据上面的描述,就可以将数之间的运算通过取余映射在有限个集合内。那么,有如下两条基本性质,可以更加方便我们进行求解

  1. 若存在 $ a \equiv b \pmod p, c \equiv d \pmod p $ ,则 $ a+c \equiv b+d \pmod p $ 。
  2. 若存在 $ a \equiv b \pmod p, c \equiv d \pmod p $ ,则 $ ac \equiv bd \pmod p $

通过这样的性质就很容易求解一个大数的对某个数字取余的结果。以计算\((2^{32} + 5)\bmod 7 = ?\)为例

  1. $ 2 \bmod 7 = 2 $
  2. $ 2^2 \bmod 7 = (2 \times 2) \bmod 7 = 4$
  3. $ 2^4 \bmod 7 = (2^2 \times 2^2) \bmod 7 = 4 \times 4 \bmod 7 = 2 $
  4. $ 2^8 \bmod 7 = {2^4 \times 2^4} \bmod 7 = [(2^4 \bmod 7) \times (2^4 \bmod 7)] \bmod 7 = (2 \times 2) \bmod 7 = 4 $
  5. $ 2^{16} \bmod 7 = {2^8 \times 2^8} \bmod 7 = [(2^8 \bmod 7) \times (2^8 \bmod 7)] \bmod 7 = (4 \times 4) \bmod 7 = 2 $
  6. $ 2^{32} \bmod 7 = (2^{16} \times 2^{16}) \bmod 7 = [(2^{16} \bmod 7) \times (2^{16} \bmod 7)] \bmod 7 = (2 \times 2) \bmod 7 = 4 $
  7. $ (2^{32}+5) \bmod 7 = [(2^{32} \bmod 7) + (5 \bmod 7)] \bmod 7 = (4 + 5) \bmod 7 = 2 $

具体实现

设问题为:求解$ a^x \bmod b = ? \(。因此问题的关键在于如何分解\)x$,具体有两种基本思路,分别是按照210进行分解。当然也可以按照其他数进行分解,但实现起来较复杂。

  1. 按数字2来分解,分解的基本原理如下:

\[\begin{cases}
& x = x // 2 + x // 2,\quad a^x = a^{x//2} \times a^{x//2} \quad \text{ if } x \bmod 2 = 0 \\
& x = x // 2 + x // 2 + 1,\quad a^x = a^{x//2} \times a^{x//2} \times a \quad \text{ if } x \bmod 2 = 1
\end{cases}
\]

根据上述公式不难写出代码:

def my_mod(a, x, b):
if x == 1:
return a % b
else:
tmp = my_mod(a, x//2, b)
if x % 2 == 0:
return ( tmp * tmp ) % b
else:
return ( tmp * tmp * my_mod(a, 1, b) ) % b
  1. 按数字10来分解,分解的基本原理如下,因为是递归的,为了方便理解,使用数字123为例:

    $ 123 = (1 \times 10 + 2) \times 10 + 3 \(
    \) a^{123} = ({3^1} ** 3^{10} \times 3^2 ) ** 3^{10} \times 3^3 $

    实现代码如下:
def my_mod(a, x, b):
def cal_mod(a, b):
L = []
for i in range(11):
L.append( (a**i) % b )
return L def recursive(x):
if 0 <= x <= 9:
return L[x]
else:
return ( recursive(x//10) ** L[10] * recursive(x%10) ) % b if 0 <= x <= 10:
return (a**x) % b
L = cal_mod(a, b)
return recursive(x)

Review

Why is the gets function so dangerous that it should not be used?

在一个比较早的代码时,运行总会出错,后面通过查找资料,发现是gets函数的问题。

当我查阅gets函数时发现,在DESCRIPTION部分直接写道Never use this function.

在阅读了一些关于gets英文文章后,我明白了为什么gets会带来问题。

简单地说,带来隐患的根源在于gets函数不会控制读入的量,而只是以\n\0作为读入的终止。例如下面这个代码:

#include<stdio.h>

int main()
{
char str1[] = "hello";
char str2[] = "world";
char *str = gets(str1);
return 0;
}

程序开始运行后,输入任意个字符,点击回车将会直接带来段错误从而终结程序。

Tips

根据上述的描述,凡要涉及到gets函数,都可以使用fgets函数进行代替

fgets函数原型如下

char *fgets(char *s, int size, FILE *stream);

从标准输入的读取方法如下:

char buffer[100];
while (fgets(buffer, sizeof(buffer), stdin))
{
// operations
}

Share

本周分享一个关于vim配置的项目——VimPlus

不少vim用户都喜欢安装或多或少的插件以增强原生vim的功能,但不少新手第一次安装插件时可能会遇到某些问题,同时也未必会一次安装配置好需要的插件。而这个项目就是为了方便新手可以通过简单的运行命令就可以安装许多常用的插件,进而配置出一个像IDE似的vim。

其中可以一键安装的插件包括vim-plugYou Complete Me

目前项目的作者的维护也比较及时。希望未来可以越做越好!

更多内容可去上述项目链接中进行查看。

(注:我与作者没有任何联系,只是发现了这个项目并且个人尝试后觉得不错,所以分享在这里)

ARTS Week 3的更多相关文章

  1. KDE声音服务器 arts

    KDE声音服务器 arts arts介绍arts是KDE的核心声音系统,支持多音频流.全双工.网络声音请求.ALSA与OSS驱动后端.JACK声音服务器后端等扩展,它既是声音服务器,也 提供一套音频软 ...

  2. 【ARTS】01_21_左耳听风-201900401~201900407

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  3. 【ARTS】01_20_左耳听风-20190325~20190331

    zz## ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 ...

  4. 【ARTS】01_19_左耳听风-20190318~20190324

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  5. 【ARTS】01_18_左耳听风-20190311~20190317

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  6. 【ARTS】01_17_左耳听风-20190304~20190310

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  7. 【ARTS】01_16_左耳听风-20190225~20190303

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  8. 【ARTS】01_15_左耳听风-20190218~20190224

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  9. 【ARTS】01_14_左耳听风-20190211~20190217

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  10. 【ARTS】01_13_左耳听风-20190204~20190210

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

随机推荐

  1. ruby 编写控制台进度条

    ruby 中,$stdout.flush 让控制台当前行内容可以重写,以此我们可以做出进度条的效果. def set_progress(index, char = '*') print (char * ...

  2. @Configuration结合@Bean实现对象的配置

    @Configuration结合@Bean实现对象的配置 前提:最近项目中需要做支付接口,支付宝以及微信支付,本文并不介绍如何写支付接口,而是通过这个示例讲解配置应该怎么写,项目中使用的是Kotlin ...

  3. 【python小随笔】将一个列表的值,分成10个一组,遍历的时候每10个遍历一次

    t = ['B071LF9R6G', 'B0714BP3H4', 'B0756FL8R7', 'B072HX95ZR', 'B07CX389LX', 'B07D9MZ7BD', 'B07D9L15L5 ...

  4. Flink系列之Time和WaterMark

    当数据进入Flink的时候,数据需要带入相应的时间,根据相应的时间进行处理. 让咱们想象一个场景,有一个队列,分别带着指定的时间,那么处理的时候,需要根据相应的时间进行处理,比如:统计最近五分钟的访问 ...

  5. 字符串分类 - hash

    链接:https://www.nowcoder.com/acm/contest/141/E来源:牛客网 题目描述 Eddy likes to play with string which is a s ...

  6. 弹性碰撞 poj 3684

    Simon is doing a physics experiment with N identical balls with the same radius of R centimeters. Be ...

  7. P4513 小白逛公园 动态维护最大子段和

    题目链接:https://www.luogu.org/problem/P4513 #include<iostream> #include<cstdio> #include< ...

  8. python中常⽤的excel模块库

    python中常用的excel模块库&安装方法 openpyxl openpyxl是⼀个Python库,用于读取/写⼊Excel 2010 xlsx / xlsm / xltx / xltm⽂ ...

  9. 华为,小米部分机型微信浏览器rem不适配的解决方案

    针对近日华为,小米的部分机型,在升级系统或升级微信之后,微信内置浏览器产生的rem不能正确填充满的问题,有如下解决方案 目前来看,产生这个情况的原因是因为给html附font-size时,附上的fon ...

  10. P1559 运动员最佳匹配问题 by hyl 天梦

    #include<iostream> using namespace std; int n; int maxx[21][21]; int lie[21]; int aa[21]; int ...