CF776D The Door Problem [2sat]
考虑 \(\texttt{2-SAT}\)
首先每个门 \(i\) 都有一个初始状态 \(a_i\)
题目条件每个门只被两个开关控制,那么很显然的 \(\texttt{2-SAT}\)
用 \(b_{i,{0/1}}\)记录是第 \(1/2\) 个开关
然后就考虑一下门的初始状态 \(a_i\)
- 门本身是开的
你开这个开关为开,另一个也要是开的,
反之亦然,所以建两对双向边
- 门本身是关的
你开这个开关为开,另一个必须是关的
反之亦然,所以还是建两对双向边
然后根据 \(\texttt{2-SAT}\) 的性质,可得答案
#include<bits/stdc++.h>
using namespace std ;
int n , m ;
const int N = 2e5 + 10 ;
int a[N] ;
int b[N][2] ;
struct Edge { int v , nxt ; } e[N << 2] ;
int head[N << 1] , cnt = 0 ;
inline void add(int u , int v) {e[++ cnt] = { v, head[u]} ; head[u] = cnt ; }
int dfn[N << 1] , low[N << 1] , idx = 0 , st[N << 1], tp = 0 , co[N << 1] , num = 0 ;
inline void tarjan(int u) { dfn[u] = low[u] = ++ idx ; st[++ tp] = u ;
for(register int i = head[u] ; i ; i = e[i].nxt) { int v = e[i].v ;
if(! dfn[v]){ tarjan(v) ; low[u] = min(low[u] , low[v]) ; }
else if(! co[v]) { low[u] = min(low[v] , dfn[v]) ; }
} if(low[u] == dfn[u]) { co[u] = ++ num ; while(st[tp] ^ u) co[st[tp --]] = num ; tp -- ; }
}
signed main() {
#ifdef _WIN64
freopen("0.in" , "r" , stdin) ;
#endif
ios :: sync_with_stdio(false) ; cin.tie(nullptr) ; cout.tie(nullptr) ;
memset(a , 0 , sizeof(a)) ; memset(b , 0 , sizeof(b)) ;
cin >> n >> m ;
for(register int i = 1 ; i <= n ; i ++) { cin >> a[i] ; }
for(register int i = 1 ; i <= m ; i ++) { int t ; cin >> t ;
for(register int j = 1 ; j <= t ; j ++) { int x ; cin >> x ; if(b[x][0]) { b[x][1] = i ; } else b[x][0] = i ; }
}
for(register int i = 1 ; i <= n ; i ++) {
if(a[i]) { add(b[i][0] , b[i][1]) ; add(b[i][1] , b[i][0]) ; add(b[i][0] + m , b[i][1] + m) ; add(b[i][1] + m , b[i][0] + m) ; }
else { add(b[i][0] , b[i][1] + m) ; add(b[i][1] + m , b[i][0]) ; add(b[i][1] , b[i][0] + m) ; add(b[i][0] + m , b[i][1]) ; }
}
for(register int i = 1 ; i <= m * 2 ; i ++) { if(! dfn[i]) tarjan(i) ; }
for(register int i = 1 ; i <= m ; i ++) if(co[i] == co[i + m]) { return cout << "NO\n" , 0 ; }
cout << "YES\n" ;
return 0 ;
}
CF776D The Door Problem [2sat]的更多相关文章
- CF776D The Door Problem[2-SAT]
翻译 对于一扇门,如果是关的,那么他必须使用其中一个开关开开来,如果是开的,要么使用两个开关,要么啥都不做.这样,每扇门恰好对应两种状态,要选一个. 考虑用2-SAT模型解决.连边的话是对于一个机关, ...
- ICM Technex 2017 and Codeforces Round #400 (Div. 1 + Div. 2, combined) D. The Door Problem 2-SAT
题目链接:http://codeforces.com/contest/776/problem/D D. The Door Problem time limit per test 2 seconds m ...
- [CF776D]The Door Problem
思路: 并查集维护每个开关的状态on[i]和off[i] .假设灯L由开关S1和S2控制.如果开关是亮的,则S1和S2的状态相反:如果开关是灭的,则S1和S2的状态相同.当一个开关状态已知时,可以得知 ...
- codeforces776D The Door Problem
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- UVa 108 - Maximum Sum(最大连续子序列)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- UVA-108-Maximum Sum-子矩阵最大和(最大连续子序列的变形)+降维处理+dp
A problem that is simple to solve in one dimension is often much more difficult to solve in more tha ...
- 【2-SAT】【并查集】ICM Technex 2017 and Codeforces Round #400 (Div. 1 + Div. 2, combined) D. The Door Problem
再来回顾一下2-SAT,把每个点拆点为是和非两个点,如果a能一定推出非b,则a->非b,其他情况同理. 然后跑强连通分量分解,保证a和非a不在同一个分量里面. 这题由于你建完图发现都是双向边,所 ...
- hdu 3622 Bomb Game(二分+2-SAT)
Bomb Game Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- [BZOJ 1997][HNOI2010]Planar(2-SAT)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1997 分析: 考虑每条边是在圈子里面还是圈子外面 所以就变成了2-SAT判定问题了= ...
随机推荐
- JCL、SLF4J、Log4J、Log4J2、LogBack和JUL之间的关系,你搞清楚了吗?
写在前面 日志组件是我们平时开发过程中必然会用到的组件.在系统中正确的打印日志至少有下面的这些好处: 调试:在程序的开发过程中,必然需要我们不断的调试以达到程序能正确执行的状态 .记录日志可以让开发人 ...
- css中flex布局
一.Flex布局是什么? Flex是Flexible Box的缩写,意为”弹性布局”,用来为盒状模型提供最大的灵活性. 任何一个容器都可以指定为Flex布局. .box{ display: flex; ...
- 《Head first设计模式》之模版方法模式
模板方法模式在一个方法中定义了一个算法的骨架,而将一些步骤延迟到子类中.模板方法使得子类可以在不改变算法结构的情况下,重新定义算法中的某些步骤. 有些人没有咖啡就活不下去:有些人则离不开茶.两者共同的 ...
- qt creator源码全方面分析(2-3-1)
目录 Using External Tools 使用Qt语言学家 预览QML文件 使用外部文本编辑器 配置外部工具 Using External Tools 您可以直接从Qt Creator中使用外部 ...
- 数据算法 --hadoop/spark数据处理技巧 --(15.查找、统计和列出大图中的所有三角形 16.k-mer计数)
十五.查找.统计和列出大图中的所有三角形 第一步骤的mr: 第二部mr: 找出三角形 第三部:去重 spark: 十六: k-mer计数 spark:
- 学习Sparql
一 . gstore--一种开源图数据库系统 https://www.docin.com/p-1951514687.html 二 . 使用 SPARQL 查询 RDF 数据 https://www.i ...
- 修改 ssh 远程连接 时间
linux使用的是 红帽旗下 centos. 解释两个文件 /etc/ssh/sshd_config 配置ssh服务器端的 ...
- 北京智和信通IT运维管理系统二次开发服务提供商
随着云计算.大数据.物联网.移动互联网.人工智能.5G等高新技术的快速发展,数据中心及网络基础设施呈现出井喷式的增长模式,对设备商来说,多.快.好.省的实现定制化网络管理开发,可极大的扩充设备适用范围 ...
- Pythone是什么鬼?
认识 Python 人生苦短,我用 Python -- Life is short, you need Python 目标 Python 的起源 为什么要用 Python? Python 的特点 Py ...
- C#设计模式学习笔记:(23)解释器模式
本笔记摘抄自:https://www.cnblogs.com/PatrickLiu/p/8242238.html,记录一下学习过程以备后续查用. 一.引言 今天我们要讲行为型设计模式的第十一个模式-- ...