题意

在所以置换下,本质不同的\(n\)阶图个数

做法

可以假想成\(K_n\),边有黑白两色,黑边存在于原图,白边存在于补图
由于\(n\le 60\),可以手算出拆分数不大,所以我们爆搜置换群

对于一个拆分方案(置换的分解序列)\((a_1,a_2,...,a_k)(a_1\le a_2\le ...\le a_k)\)

  • 考虑某个因子内的黑边\((m=|a_i|)\),如果\((1,2)\)为黑边,则\((2,3),(3,4),...,(m,1)\)均为黑边
    依次可推得有\(\left\lfloor\frac{m}{2}\right\rfloor\)个等价类(并不是\(m-1\)个,可以手玩一下)
  • 考虑两个因子件的黑边\((m_1=|a_i|,m_2=|a_j|,i\neq j)\),有\((m_1,m_2)\)个等价类

当然,对于一个拆分方案\((a_1,a_2,...,a_k)\)(以下\(num_i\)为\(i\)在其中出现的次数)
于置换显然不是双射关系,还得对应到若干个置换中去,统计置换个数(这部分网上有些题解有问题):
\[\frac{n!}{\prod\limits_{i=1}^k (a_i!)}\times \prod\limits_{i=1}^k ((a_i-1)!)\times\prod\limits_{i=1}^n \frac{1}{num_i!}=\frac{n!}{\prod\limits_{i=1}^k (a_i)\prod\limits_{i=1}^n (num_i!)}\]

[HNOI2009]图的同构记数的更多相关文章

  1. P4727 [HNOI2009]图的同构记数

    传送门 如果我们把选出子图看成选出边,进而看成对边黑白染色,那么就是上一题的弱化版了,直接复制过来然后令\(m=2\)即可 不过直接交上去会T,于是加了几发大力优化 不知为何华丽的被小号抢了rank2 ...

  2. Luogu P4727-- 【HNOI2009】图的同构记数

    Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...

  3. 【BZOJ1488】[HNOI2009]图的同构(Burside引理,Polya定理)

    [BZOJ1488][HNOI2009]图的同构(Burside引理,Polya定理) 题面 BZOJ 洛谷 题解 求本质不同的方案数,很明显就是群论这套理论了. 置换一共有\(n!\)个,考虑如何对 ...

  4. bzoj1488 [HNOI2009]图的同构 Burnside 引理

    题目传送门 bzoj1488 - [HNOI2009]图的同构 bzoj1815 - [Shoi2006]color 有色图(双倍经验) 题解 暴力 由于在做题之前已经被告知是 Burnside 引理 ...

  5. bzoj1488[HNOI2009]图的同构

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1488 1488: [HNOI2009]图的同构 Time Limit: 10 Sec  M ...

  6. 记数排序 & 桶排序 & 基数排序

    为什么要写这样滴一篇博客捏...因为一个新初一问了一道水题,结果就莫名其妙引起了战斗. 然后突然发现之前理解的桶排序并不是真正的桶排序,所以写一篇来区别下这三个十分相似的排序辣. 老年菜兔的觉醒!!! ...

  7. Python02 标准输入输出、数据类型、变量、随记数的生成、turtle模块详解

    1 标准输出 python3利用 print() 来实现标准输出 def print(self, *args, sep=' ', end='\n', file=None): # known speci ...

  8. 记数问题(0)<P2013_1>

    记数问题 (count.cpp/c/pas) [问题描述]  试计算在区间1到n的所有整数中,数字x(0≤x≤9)共出现了多少次?例如,在1到11中,即在1.2.3.4.5.6.7.8.9.10.11 ...

  9. bzoj 1488: [HNOI2009]图的同构

    Description 求两两互不同构的含n个点的简单图有多少种. 简单图是关联一对顶点的无向边不多于一条的不含自环的图. a图与b图被认为是同构的是指a图的顶点经过一定的重新标号以后,a图的顶点集和 ...

随机推荐

  1. 《古剑奇谭3》千秋戏辅助工具(前端React制作)

    前言 一直身在武汉,基于众所周知的疫情原因,这个春节只能宅着. 不过其实这个春节是这些年来过得最爽的一个了. 没有鞭炮,不用四处跑,安安心心呆在家里玩玩游戏看看书写写代码,其实日子过得还是挺悠闲的. ...

  2. 【MySQL 线上 BUG 分析】之 多表同字段异常:Column ‘xxx’ in field list is ambiguous

    一.生产出错! 今天早上11点左右,我在工作休息之余,撸了一下猫.突然,工作群响了,老大在里面说:APP出错了! 妈啊,这太吓人了,因为只是说了出错,但是没说错误的信息.所以我赶紧到APP上看看. 这 ...

  3. coroutine - yield from

    yield from yield from x 表达式对 x 对象所做的第一件事是,调用 iter(x),从中获取迭代器.因 此, x 可以是任何可迭代的对象. 可是,如果 yield from 结构 ...

  4. nginx单个ip访问频率限制

    一.限制所有单个ip的访问频率 1.http中的配置 http { #$limit_conn_zone:限制并发连接数 limit_conn_zone $binary_remote_addr zone ...

  5. Samba搭建Linux和Windows文件共享服务

    一.Samba简介 Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成.SMB(Server Messages Block,信息服务块)是一种在局域网上共享 ...

  6. Windows安装node环境,部署静态网站

    1.进入官网,下载nodejs https://nodejs.org/zh-cn/ 2.安装nodejs win10怎么安装nodejs和npm https://jingyan.baidu.com/a ...

  7. F——宋飞正传(HDU3351)

    题目:   I’m out of stories. For years I’ve been writing stories, some rather silly, just to make simpl ...

  8. kali安装—来自重装3次,创建了8个虚拟机的老安装师

    个人是有点生气的,但其实用好默认设置就很简单 我个人参考了好几个博客在这里附上链接: 1.其他人博客每步详细https://blog.csdn.net/chaootis1/article/detail ...

  9. Spring有哪些配置方式

    1.XML 配置文件. Bean 所需的依赖项和服务在 XML 格式的配置文件中指定.这些配置文件通常包含许多 bean 定义和特定于应用程序的配置选项.它们通常以 bean 标签开头.例如: < ...

  10. ES6 - 基础学习(5): 数值扩展

    二进制和八进制数值表示法 ES6提供了二进制和八进制数值的新写法,分别前缀 0b(或0B). 0o(或0O)然后跟上二进制.八进制值即可. 二进制(Binary)表示法新写法:前缀 0b 或 0B. ...