bias–variance tradeoff

通过机器学习,我们可以从历史数据学到一个\(f\),使得对新的数据\(x\),可以利用学到的\(f\)得到输出值\(f(x)\)。设我们不知道的真实的\(f\)为\(\overline{f}\),我们从数据中学到的\(f\)为\(f^{*}\),实际上\(f^{*}\)是\(\overline{f}\)的一个估计。在统计中,变量\(x\)的均值\(mean\)表示为\(\mu\),方差\(variance\)表示为\(\sigma\),假设我们抽取出\(x\)的\(N\)个样本,可以用\(m=\frac{1}{N}\sum_{i=1}^{N}x_{i}\)来估计\(\mu\),但实际上\(m \neq \mu\),如果我们抽取很多次得到不同的m,那么期望\(E(m)=E(\frac{1}{N}\sum_{i=1}^{N}x_{i})=\frac{1}{N}\sum_{i=1}^{N}E(x_{i})=E(x)=\mu\)。\(var(m)=\frac{\sigma^2}{N}\),即抽取的样本\(N\)大,\(m\)的\(variance\)越小。\(s^2=\frac{1}{N}\sum_{i=1}^{N}(x_{i}-m)^2\),\(E(s^2)=\frac{N-1}{N}\sigma^2\neq\sigma^2\),因此\(s^2\)是有偏估计量。
实际上,如果用平方误差表示,误差分为3个部分(来自wikipedia):

偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力;
方差度量了同样大小的训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响;
噪声则表达了在当前任务上任何学习算法所能达到的期望泛化误差的下界,即刻画了学习问题本身的难度。
通常,简单的模型variance小(不同数据上的结果差异较小),bias大,容易表现为欠拟合,需要增加模型复杂度,加入新的特征;复杂的模型variance大(表达能力强,对不同数据较敏感,结果差异较大),bias小(平均来说与真实结果较为接近),容易表现为过拟合,需要增加更多数据(非常有效,但不太现实)或者用正则化来控制模型的复杂程度。

常见错误:
在机器学习任务中,如果使用测试集正确率为依据来调整模型,容易出现过拟合的现象,使得泛化误差很大。通常做法是交叉验证(Cross Validation),根据划分验证集上的平均结果来调整模型,不要过分关心测试集上的结果,如果验证集上的误差小,那么测试集上的期望误差也会小。

机器学习总结-bias–variance tradeoff的更多相关文章

  1. 2.9 Model Selection and the Bias–Variance Tradeoff

    结论 模型复杂度↑Bias↓Variance↓ 例子 $y_i=f(x_i)+\epsilon_i,E(\epsilon_i)=0,Var(\epsilon_i)=\sigma^2$ 使用knn做预测 ...

  2. [转]理解 Bias 与 Variance 之间的权衡----------bias variance tradeoff

    有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于 ...

  3. On the Bias/Variance tradeoff in Machine Learning

    参考:https://codesachin.wordpress.com/2015/08/05/on-the-biasvariance-tradeoff-in-machine-learning/ 之前一 ...

  4. Bias/variance tradeoff

    线性回归中有欠拟合与过拟合,例如下图: 则会形成欠拟合, 则会形成过拟合. 尽管五次多项式会精确的预测训练集中的样本点,但在预测训练集中没有的数据,则不能很好的预测,也就是说有较大的泛化误差,上面的右 ...

  5. Error=Bias+Variance

    首先 Error = Bias + Variance Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输 ...

  6. 【笔记】偏差方差权衡 Bias Variance Trade off

    偏差方差权衡 Bias Variance Trade off 什么叫偏差,什么叫方差 根据下图来说 偏差可以看作为左下角的图片,意思就是目标为红点,但是没有一个命中,所有的点都偏离了 方差可以看作为右 ...

  7. 机器学习:偏差方差权衡(Bias Variance Trade off)

    一.什么是偏差和方差 偏差(Bias):结果偏离目标位置: 方差(Variance):数据的分布状态,数据分布越集中方差越低,越分散方差越高: 在机器学习中,实际要训练模型用来解决一个问题,问题本身可 ...

  8. 机器学习模型 bias 和 variance 的直观判断

    假设我们已经训练得到 一个模型,那么我们怎么直观判断这个 模型的 bias 和 variance? 直观方法: 如果模型的 训练错误 比较大,并且 验证错误 和 训练错误 差不多一样,都比较大,我们就 ...

  9. 【笔记】机器学习 - 李宏毅 - 3 - Bias & Variance

    A more complex model does not always lead to better performance on testing data. Because error due t ...

随机推荐

  1. gulp的简介以及使用方法

    环境介绍: pro环境:生产环境,面向外部用户的环境,连接上互联网即可访问的正式环境. pre环境:灰度环境,外部用户可以访问,但是服务器配置相对低,其它和生产一样. test环境:测试环境,外部用户 ...

  2. [Abp vNext 源码分析] - 14. EntityFramework Core 的集成

    一.简要介绍 在以前的文章里面,我们介绍了 ABP vNext 在 DDD 模块定义了仓储的接口定义和基本实现.本章将会介绍,ABP vNext 是如何将 EntityFramework Core 框 ...

  3. 海思dv300cv500交叉编译webrtc

    感谢声网提供的webrtc国内源码镜像. 首先要安装好海思编译工具链和git. 先替换一下webrtc代码的仓库网址路径 git config --global user.email "10 ...

  4. opensuse安装Tomcat碰到的问题

    已经安装好JDE,并配置好环境变量 从官网下载Tomcat tar包,解压到用户目录,进入运行bin下的start.sh,显示运行成功,但是浏览器中输入localhost:8080连接不上 检查一番发 ...

  5. KnockoutJs官网教程学习(一)

    这一教程中你将会体验到一些用knockout.js和Model-View-ViewModel(MVVM)模式去创建一个Web UI的基础方式. 将学会如何用views(视图)和declarative ...

  6. RocketMQ客户端加载流程

     这节介绍RocketMQ客户端的启动流程,即Consumer和Producer的启动流程. 1. 客户端demo  首先先看下客户端的demo Producer: public class Sync ...

  7. dp-完全背包

    (  推荐 : http://blog.csdn.net/insistgogo/article/details/11081025 ) 问题描述 : 已知一个容量为 V 的背包 和 N 件物品 , 第 ...

  8. hadoop各版本hadoop.dll和winutils.exe缺少这两个文件

    1.1 缺少winutils.exeCould not locate executable null \bin\winutils.exe in the hadoop binaries1.2 缺少had ...

  9. Java入门 - 语言基础 - 18.正则表达式

    原文地址:http://www.work100.net/training/java-regular-expression.html 更多教程:光束云 - 免费课程 正则表达式 序号 文内章节 视频 1 ...

  10. JSONArray 与 List 互转

    List 转 JSONArray // 通过JSONPath获取其中数据,也可以说自己生成的List List<JSONObject> caseList = JsonPath.read(r ...