说说GAN(生成式对抗网络)
在Auto-encoder中,input data通过一个encoder神经网络得到一个维度的较低的向量,称这个向量为code,code经过一个decoder神经网络后输出一个output data。
encoder 网络的作用是用来发现给定数据的压缩表示。decoder网络使原始输入的尽可能地相同的重建的表示。在训练时,decoder 强迫 auto-encoder选择最有信息量的特征,最终保存在code中。重建的输入越靠近原始输入,最终得到的表示越好。
通过得到的encoder和decoder可以做很多事情。例如,可以通过encoder网络来对原始数据降维和自动抽取特征。我们也可以随机生成的很多code(低维向量)经过decoder网络来得到很多随机生成的数据。如图:
对于生成数据这个任务来说,比Auto-encoder更擅长的是VAE(Variational Auto-Encoding ),VAE在Auto-encoder框架加入了噪声影响,同时加入了类似正则的约束。但是VAE存在的问题是VAE并不是真正的生成数据,而是生成一个和和训练样本最接近的数据。例如在训练过程中:
output1:
output2:
由于output1和output2都只变化了一个像素,VAE会认为output1和output2的损失是一样的,但实际上output1比output2更像7。
GAN(Generative Adversarial Net)
GAN中有一个generator和discriminator。discriminator负责判断是真实数据还是生成的数据,generator负责生成数据它的目标是生成的数据能够骗过discriminator。
generator和discriminator是一种竞争和对抗的关系。
极小极大博弈问题:
\[\underset{G}{min} \: \underset{D}{max}V(D,G) =E_{x\sim p_{data}(x)}[logD(x)]+E_{z\sim p_{z}(z)}[log(1-D(G(z)))]\]
GAN的算法流程:
交替更新discriminator和generator,最终当\(P_{g}\)收敛到真实分布\(P_{data}\)时,达到均衡。
理论推导可以参考这里
说说GAN(生成式对抗网络)的更多相关文章
- GAN生成式对抗网络(四)——SRGAN超高分辨率图片重构
论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈 ...
- GAN生成式对抗网络(三)——mnist数据生成
通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 import numpy as np import matplotlib.pyplot as plt import input_dat ...
- GAN生成式对抗网络(一)——原理
生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型 GAN包括两个核心模块. 1.生成器模块 --generator 2.判别器模块--de ...
- 不要怂,就是GAN (生成式对抗网络) (一)
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 不要怂,就是GAN (生成式对抗网络) (一): GAN 简介
前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...
- 不要怂,就是GAN (生成式对抗网络) (六):Wasserstein GAN(WGAN) TensorFlow 代码
先来梳理一下我们之前所写的代码,原始的生成对抗网络,所要优化的目标函数为: 此目标函数可以分为两部分来看: ①固定生成器 G,优化判别器 D, 则上式可以写成如下形式: 可以转化为最小化形式: 我们编 ...
- 不要怂,就是GAN (生成式对抗网络) (五):无约束条件的 GAN 代码与网络的 Graph
GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu ...
- 不要怂,就是GAN (生成式对抗网络) (二)
前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...
- 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN
在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...
- 不要怂,就是GAN (生成式对抗网络) (二):数据读取和操作
前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...
随机推荐
- 从0开发3D引擎(三):搭建开发环境
本系列使用Reason语言,因此需要搭建它的开发环境. 上一篇博文 从0开发3D引擎(二):准备预备知识 搭建开发环境 建议使用VSCode编辑器来开发Reason,因为它的插件支持得最好. 具体搭建 ...
- MacBook Pro 入手一年了,到底香不香?
最近又有小伙伴问到底值不值得入手一台 MacBook Pro,松哥自己在 2018 年 10 月份的时候入手了一台,到现在为止,也用了一年多了,今天就来和小伙伴们聊一聊使用感受,至于到底值不值,需要大 ...
- day2(使用list和tuple)
list list是一种有序的集合 >>>aaa = ['abc','bob','tracy'] >>>aaa ['abc','bob','tracy'] len( ...
- TensorFlow——MNIST手写数据集
MNIST数据集介绍 MNIST数据集中包含了各种各样的手写数字图片,数据集的官网是:http://yann.lecun.com/exdb/mnist/index.html,我们可以从这里下载数据集. ...
- php5升php7代码修改整理
1. 为什么升级至php7 a.安全需要 过早以至于不维护的php版本难免会有未修补的漏洞,安全性要求较高的行业是要及时升级的. b.性能提升(开启opcache hugepage) 据说性能提升一倍 ...
- 记录我的 python 学习历程-Day13 匿名函数、内置函数 II、闭包
一.匿名函数 以后面试或者工作中经常用匿名函数 lambda,也叫一句话函数. 课上练习: # 正常函数: def func(a, b): return a + b print(func(4, 6)) ...
- @RequestParam,@PathVariable,@RequestBody
@RequestParam 和 @PathVariable 注解是用于从request中接收请求的,两个都可以接收参数,关键点不同的是@RequestParam 是从request里面拿取值,而 @P ...
- Python Global和Nonlocal的用法
nonlocal 和 global 也很容易混淆.简单记录下自己的理解. 解释 global 总之一句话,作用域是全局的,就是会修改这个变量对应地址的值. global 语句是一个声明,它适用于整个当 ...
- mysql 行增删改查
一.增 ); ),(); insert into student(name, age) select name, age from info; 二.删 delete from db1; delete ...
- Java入门 - 语言基础 - 15.StringBuffer
原文地址:http://www.work100.net/training/java-stringbuffer.html 更多教程:光束云 - 免费课程 StringBuffer 序号 文内章节 视频 ...