质数的判定 Miller_Rabin
----------- 10^18
#include <bits/stdc++.h>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
typedef long long ll;
inline int read() {
int f=1,sum=0;
char x=getchar();
for(;(x<'0'||x>'9');x=getchar()) if(x=='-') f=-1;
for(;x>='0'&&x<='9';x=getchar()) sum=sum*10+x-'0';
return f*sum;
} int x_[10]={3,5,7,11,13,17,19,23}; inline ll mul(ll x,ll y,ll mod) {
ll tmp=x*y-((ll)((long double)x/mod*y+0.5))*mod;
return tmp<0?tmp+mod:tmp;
} inline ll qmul(ll x,ll ci,ll mod) {
ll sum=1;
for(;ci;ci>>=1,x=mul(x,x,mod))
if(ci&1) sum=mul(sum,x,mod);
return sum;
} inline bool Miller_Rabin(ll n) {
if(n==1) return 0;
if(n==2) return 1;
if(!(n&1)) return 0;
ll t=n-1;
int now=0;
while (!(t&1)) t>>=1,++now; for(int i = 0; i <= 7; i++){
if(x_[i]==n) return 1;
ll x=qmul(x_[i],t,n),y=x;
for(int j = 1; j <= now; j++) {
x=mul(x,x,n);
if(x==1&&!(y==1||y==n-1)) return 0;
y=x;
}
if(x!=1) return 0;
}
return 1;
} int main () {
//freopen("a.in","r",stdin);
ll x;
while (scanf("%lld",&x)==1) {
if(Miller_Rabin(x)) puts("Y");
else puts("N");
}
}
质数的判定 Miller_Rabin的更多相关文章
- 数学#素数判定Miller_Rabin+大数因数分解Pollard_rho算法 POJ 1811&2429
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: h ...
- LibreOJ#143 质数判定 [Miller_Rabin]
题目传送门 质数判定 题目描述 判定输入的数是不是质数. 输入格式 若干行,一行一个数 x. 行数不超过 $1.5\times 10^4$ 输出格式 对于输入的每一行,如果 x是质数输出一行 Y,否则 ...
- 【模板】质数判断(Miller_Rabin)
题意简述 给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 题解思路 费马小定理: n是一个奇素数,a是任何整数(\(1≤ a≤n-1\)) ,则\(a^{p-1}≡1 ...
- POJ中和质数相关的三个例题(POJ 2262、POJ 2739、POJ 3006)
质数(prime number)又称素数,有无限个.一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数:否则称为合数. 最小的质数 ...
- 求第n个质数
输入一个不超过 10000 的正整数 n,求第n个质数 样例输入 10 样例输出 29 题目地址 #include<stdio.h> #include<math.h> int ...
- Miller-Robin与二次探测
素数在数论中经常被用到.也是数论的基础之一. 人们一直在讨论的问题是,怎样快速找到素数?或者判断一个数是素数? 1.根号n枚举 原始暴力方法. 2.埃氏筛 每个合数会被筛质因子次数次.复杂度O(Nlo ...
- (转载)O(N)的素数筛选法和欧拉函数
转自:http://blog.csdn.net/dream_you_to_life/article/details/43883367 作者:Sky丶Memory 1.一个数是否为质数的判定. 质数,只 ...
- BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho
BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一 ...
- 『正睿OI 2019SC Day7』
简单数论 质因子分解 素性测试 素性测试指的是对一个正整数是否为质数的判定,一般来说,素性测试有两种算法: \(1.\) 试除法,直接尝试枚举因子,时间复杂度\(O(\sqrt n)\). \(2.\ ...
随机推荐
- [转]在ASP.NET WebAPI 中使用缓存【Redis】
初步看了下CacheCow与OutputCache,感觉还是CacheOutput比较符合自己的要求,使用也很简单 PM>Install-Package Strathweb.CacheOutpu ...
- UPC 2019年第二阶段我要变强个人训练赛第六场
传送门 A.上学路线 题目描述 小D从家到学校的道路结构是这样的:由n条东西走向和m条南北走向的道路构成了一个n*m的网格,每条道路都是单向通行的(只能从北向南,从西向东走). 已知小D的家在网格的左 ...
- UVA 247"Calling Circles"(floyd求传递闭包+SCC)
传送门 题意: 如果两个人相互打电话(直接或间接),则说他们在同一个电话圈里. (a,b) 表示 a 打给 b: 例如,(a,b),(b,c),(c,d),(d,a),则这四个人在同一个电话圈里: 输 ...
- poll 和 select 底层的数据结构
poll 和 select 系统调用的真正实现是相当地简单, 对那些感兴趣于它如何工作的人; epoll 更加复杂一点但是建立在同样的机制上. 无论何时用户应用程序调用 poll, select, 或 ...
- SPA+.NET Core3.1 GitHub第三方授权登录 使用AspNet.Security.OAuth.GitHub
GitHub第三方授权登录 使用SPA+.NET Core3.1实现 GitHub第三方授权登录 类似使用AspNet.Security.OAuth.GitHub,前端使用如下:VUE+Vue-Rou ...
- IdentityServer4 Resources
原文地址 Resources 的定义 通常在系统中是顶一个需要保护的资源.这些资源可是用户的信息,比如身份信息或者邮箱地址,也可以是某些API的访问权限. Note: 可以通过C#的对象模型或者通过数 ...
- Libra和中国央行数字货币(DCEP)的对比
最近偶然和朋友讨论起Libra,对Libra和央行的数字货币方案很感兴趣.梳理了阅读资料(参考见文末)和自己的思考,发知乎留个记录. Libra 是什么? 无国界货币 + 为全球数十亿人服务的金融基础 ...
- 一个APP从启动到主页面显示经历了哪些过程?
①点击桌面App图标,Launcher进程采用Binder IPC向system_server进程发起startActivity请求: ②system_server进程接收到请求后,向zygote进程 ...
- CUP计算资源争抢通过IIS启用处理器关联解决
由于业务的复杂性,我们在客户环境部署的时候,采用的是预装好在一台机器然后再把机器安装到客户环境,所以为了简单方便,我们把所有的服务都安装到一台机器上面了. 在正常的使用过程中是没有任何问题的.但是当有 ...
- vs指定QT的工作目录(依赖第三方动态库时,这时vs编译出来后,运行会提示缺少动态库)good
当一个工程依赖第三方动态库时,这时vs编译出来后,运行会提示缺少动态库.解决方法: 项目->属性->调试: 工作目录:指定程序运行时的目录 环境:指定程序运行时的环境变量 我们可以在环境变 ...