Segments
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10921   Accepted: 3422

Description

Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

Output

For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

Sample Input

3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0

Sample Output

Yes!
Yes!
No!

Source

题意:t组数据,每组n个线段,都是给定四个点表,问是否存在一条直线使所有线段在这个直线上的投影互相至少相交于一点.

思路:转化成存在一条直线与所有线段都相交。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#include <set>
#define ll long long
using namespace std;
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
double xmult(Point p0,Point p1,Point p2) //p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn(xmult(l2.s,l1.s,l1.e))*sgn(xmult(l2.e,l1.s,l1.e)) <= ;
}
double dist(Point a,Point b)
{
return sqrt( (b - a)*(b - a) );
}
const int MAXN = ;
Line line[MAXN];
bool check(Line l1,int n)
{
if(sgn(dist(l1.s,l1.e)) == ) return false;
for(int i = ; i < n; i++)
if(Seg_inter_line(l1,line[i]) == false) return false;
return true;
} int main(void)
{
int n,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
double x1,y1,x2,y2;
for(int i = ; i < n; i++)
{
scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
line[i] = Line(Point(x1,y1),Point(x2,y2));
}
bool flag = false;
for(int i = ; i < n; i++)
for(int j = ; j < n; j++)
if(check(Line(line[i].s,line[j].s),n) || check(Line(line[i].s,line[j].e),n) || check(Line(line[i].e,line[j].s),n)||check(Line(line[i].e,line[j].e),n) )
{
flag = true;
break;
} if(flag) printf("Yes!\n");
else printf("No!\n");
}
return ;
}

poj 3304 Segments(计算直线与线段之间的关系)的更多相关文章

  1. POJ 3304 Segments 判断直线和线段相交

    POJ 3304  Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...

  2. POJ 3304 Segments (判断直线与线段相交)

    题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...

  3. POJ 3304 Segments (直线和线段相交判断)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 2316 Descript ...

  4. POJ 3304 Segments (直线与线段是否相交)

    题目链接 题意 : 能否找出一条直线使得所有给定的线段在该直线上的投影有一个公共点. 思路 : 假设存在一条直线a使得所有线段在该直线上的投影有公共点,则必存在一条垂直于直线a的直线b,直线b与所有线 ...

  5. Segments--poj3304(判断直线与线段之间的关系)

    http://poj.org/problem?id=3304 给你几条线段  然后 让你找到一条直线让他在这条直线上的映射有一个重合点 如果有这条直线的话  这个重合的部分的两个端点一定是某两条线段的 ...

  6. POJ 3304 Segments(直线)

    题目: Description Given n segments in the two dimensional space, write a program, which determines if ...

  7. POJ 3304 Segments(计算几何:直线与线段相交)

    POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...

  8. POJ 3304 Segments(判断直线与线段是否相交)

    题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...

  9. 判断直线与线段相交 POJ 3304 Segments

    题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...

随机推荐

  1. Android开发 layer-list详解

    参考:https://blog.csdn.net/speverriver/article/details/80925686 挖坑,以后填坑

  2. SQLServer中使用索引视图

    在SQL Server中,视图是一个保存的T-SQL查询.视图定义由SQL Server保存,以便它能够用作一个虚拟表来简化查询,并给基表增加另一层安全.但是,它并不占用数据库的任何空间.实际上,在你 ...

  3. 为WCF增加UDP绑定(储备篇)

    日前我开发的服装DRP需要用到即时通信方面的技术,比如当下级店铺开出零售单时上级机构能实时收到XX店铺XX时XX分卖出XX款衣服X件之类的信息,当然在上级发货时,店铺里也能收到已经发货的提醒.即时通信 ...

  4. CentOS6.5下源码安装多个MySQL实例及复制搭建

    多实例安装本节是在CentOS6.5下源码安装MySQL5.6.35的基础上,在同一台机器增加一个MySQL实例.参考Centos中安装多个mysql数据的配置实例,安装目录为/usr/local/m ...

  5. vue后台管理项目中菜单栏切换的三种方法

    第一种方法:vue嵌套路由(二) <el-menu :default-active="defaultActive" style="min-height: 100%; ...

  6. 对CNN感受野一些理解

    对CNN感受野一些理解 感受野(receptive field)被称作是CNN中最重要的概念之一.为什么要研究感受野呐?主要是因为在学习SSD,Faster RCNN框架时,其中prior box和A ...

  7. Bash 常用快捷方式

    从历史中执行命令 ctrl +r 搜索历史命令记录 !$ 重复上一个命令参数 文本编辑的快捷方式 c    分别更改这些配对标点符号中的文本内容 di   分别删除这些配对标点符号中的文本内容 do ...

  8. [转]在C#代码中应用Log4Net系列教程(附源代码)

    Log4Net应该可以说是DotNet中最流行的开源日志组件了.以前需要苦逼写的日志类,在Log4Net中简单地配置一下就搞定了.没用过Log4Net,真心不知道原来日志组件也可以做得这么灵活,当然这 ...

  9. C/C++获取系统当前时间

    C/C++获取系统当前时间   C库中与系统时间相关的函数定义在<time.h>头文件中, C++定义在<ctime>头文件中. 一.time(time_t*)函数 函数定义如 ...

  10. Kubernetes架构介绍

    目录 Kubernetes架构 k8s架构图 一.K8S Master节点 API Server Scheduler Controller Manager ETCD 二.K8S Node节点 Kube ...