poj 3304 Segments(计算直线与线段之间的关系)
Segments
Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10921 Accepted: 3422 Description
Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.
Input
Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.
Output
For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.
Sample Input
3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0Sample Output
Yes!
Yes!
No!Source
题意:t组数据,每组n个线段,都是给定四个点表,问是否存在一条直线使所有线段在这个直线上的投影互相至少相交于一点.
思路:转化成存在一条直线与所有线段都相交。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#include <set>
#define ll long long
using namespace std;
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
double xmult(Point p0,Point p1,Point p2) //p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
return sgn(xmult(l2.s,l1.s,l1.e))*sgn(xmult(l2.e,l1.s,l1.e)) <= ;
}
double dist(Point a,Point b)
{
return sqrt( (b - a)*(b - a) );
}
const int MAXN = ;
Line line[MAXN];
bool check(Line l1,int n)
{
if(sgn(dist(l1.s,l1.e)) == ) return false;
for(int i = ; i < n; i++)
if(Seg_inter_line(l1,line[i]) == false) return false;
return true;
} int main(void)
{
int n,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
double x1,y1,x2,y2;
for(int i = ; i < n; i++)
{
scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
line[i] = Line(Point(x1,y1),Point(x2,y2));
}
bool flag = false;
for(int i = ; i < n; i++)
for(int j = ; j < n; j++)
if(check(Line(line[i].s,line[j].s),n) || check(Line(line[i].s,line[j].e),n) || check(Line(line[i].e,line[j].s),n)||check(Line(line[i].e,line[j].e),n) )
{
flag = true;
break;
} if(flag) printf("Yes!\n");
else printf("No!\n");
}
return ;
}
poj 3304 Segments(计算直线与线段之间的关系)的更多相关文章
- POJ 3304 Segments 判断直线和线段相交
POJ 3304 Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...
- POJ 3304 Segments (判断直线与线段相交)
题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...
- POJ 3304 Segments (直线和线段相交判断)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 2316 Descript ...
- POJ 3304 Segments (直线与线段是否相交)
题目链接 题意 : 能否找出一条直线使得所有给定的线段在该直线上的投影有一个公共点. 思路 : 假设存在一条直线a使得所有线段在该直线上的投影有公共点,则必存在一条垂直于直线a的直线b,直线b与所有线 ...
- Segments--poj3304(判断直线与线段之间的关系)
http://poj.org/problem?id=3304 给你几条线段 然后 让你找到一条直线让他在这条直线上的映射有一个重合点 如果有这条直线的话 这个重合的部分的两个端点一定是某两条线段的 ...
- POJ 3304 Segments(直线)
题目: Description Given n segments in the two dimensional space, write a program, which determines if ...
- POJ 3304 Segments(计算几何:直线与线段相交)
POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...
- POJ 3304 Segments(判断直线与线段是否相交)
题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...
- 判断直线与线段相交 POJ 3304 Segments
题意:在二维平面中,给定一些线段,然后判断在某直线上的投影是否有公共点. 转化,既然是投影,那么就是求是否存在一条直线L和所有的线段都相交. 证明: 下面给出具体的分析:先考虑一个特殊的情况,即n=1 ...
随机推荐
- Codeforces Round #478 Div2 975A 975B 975C 975D
A. Aramic script 题目大意: 对于每个单词,定义一种集合,这个集合包含且仅包含单词中出现的字母.给你一堆单词,问有多少种这种集合. 题解: 状压,插入set,取size #in ...
- android 遍历控件
做个笔记 androuid 遍历一个 view 下面的子view // 保存 btnSaveRout.setOnClickListener(new OnClickListener() { @Overr ...
- AJAX相关概念及应用
1.Ajax(Asynchronous JavaScript And XML) 异步的JavaScript和XML XML 可扩展标记语言 Ajax是常用的WEB开发技术,是联系前端和后端的桥梁 应用 ...
- python中的多线程编程与暂停、播放音频的结合
先给两个原文链接: https://blog.csdn.net/u013755307/article/details/19913655 https://www.cnblogs.com/scolia/p ...
- 杂项-公司:Apple
ylbtech-杂项-公司:Apple 苹果公司(Apple Inc. )是美国的一家高科技公司.由史蒂夫·乔布斯.斯蒂夫·沃兹尼亚克和罗·韦恩(Ron Wayne)等人于1976年4月1日创立,并命 ...
- 反编译之jd-gui的安装
1.下载JD-GUI http://jd.benow.ca/ 2.下载的dmg安装一直失败 通过brew(https://brew.sh/index_zh-cn.html)命令安装 brew cas ...
- Attribute类的使用
为每个变量设置设置属性 "Description" public class PatternOption { /// <summary> /// 方向图步长 /// & ...
- yii2下使用支付宝
最近入坑了yii2 感觉是个很强大的框架.使用yii做支付宝的移动支付的时候出了点问题,记录下来避免以后忘记了. 使用的是支付宝立即到账的功能,网上很多集成好的接口我就不重复了,找不到的话github ...
- GetCommandLine CmdLineToArgvW
说明:LPTSTR GetCommandLine(VOID); LPWSTR * CommandLineToArgvW( ...
- C/C++ 信号量 CreateSemaphore 用法
HANDLE CreateSemaphore( LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, // SD LONG lInitialCount, // in ...