sas单变量的特征分析

大炮,我有个烦恼,我领导最近老叫我单变量结合因变量分析,但是都是分段分析,我总是写proc sql然后group by
,但是这个过程好无聊啊,有木有什么新的代码,让我可以分析的快点啊。

最近写了个宏,刚好可以解决你这个问题,在上代码之前,先来个结果图

詹大炮

这个结果对于分析来说是不好的,因为这个结果没啥实际意义,说白了就是跟因变量没关系,但是这个图我们不是要来讲变量怎么有用,我们要介绍的是这段代码最后呈现的一个结果是怎样的。

代码:

%macro ChcAnalysis(DSin, DVVar, VarX,
NBins, Method, DSChc);

proc sort data=&DSin;

by &VarX;

run;

Data temp;

set &DSin ;

by &VarX;

_Obs=_N_;

keep &DVVAr
&VarX _Obs;

run;

proc sql noprint;

%if &Method=1 %then
%do;

select count(&DVVar)
into :N from temp;

select max(_Obs), min(_Obs) into :Vmax,
:Vmin from temp;

%let
BinSize=%sysevalf((&Vmax)/&Nbins);

%let LB_1=0;

%do i=1 %to
%eval_r(&Nbins-1);

%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);

%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
_obs>=&&Lb_&i
and
_obs<&&Ub_&i;

%end;

%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);

%let
UB_&NBins=&Vmax;

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
_obs>=LB_&NBins and
_obs<=UB_&NBins;

%end;

%else %do ;

select count(&DVVar)
into :N from temp;

select max(&VarX),
min(&VarX) into :Vmax, :Vmin from temp;

%let
BinSize=%sysevalf((&Vmax-&Vmin)/&Nbins);

%let LB_1=&Vmin;

%do i=1 %to
%eval_r(&Nbins-1);

%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);

%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
&VarX>=&&Lb_&i
and
&VarX<&&Ub_&i;

%end;

%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);

%let
UB_&NBins=&Vmax;

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
&VarX>=&&Lb_&i
and
&VarX<=&&UB_&i;

%end;

quit;

data &DSChc;

%do i=1 %to &NBins;

Bin=&i;

LowerBound=&&LB_&i;

UpperBound=&&UB_&i;

if
(&&sum_&i =. ) then
N_1=0; else
N_1=&&Sum_&i;

if
&&N_&i=. then
BinTotal=0; else
BinTotal=&&N_&i;

N_0 = BinTotal-N_1;

Percent_1=100*N_1/BinTotal;

Percent_0=100*N_0/BinTotal;

output;

%end;

Run;

proc datasets nodetails nolist
library=work;

delete temp;

run;

quit;

%mend;

詹大炮

还是老样子,分段介绍。

01

% ChcAnalysis(DSin, DVVar, VarX, NBins,
Method, DSChc);

DSin:填入的是原数据集;

DVVar:填入因变量,这里我们分析的是二元的因变量,所以因变量一定要是二元的,并且必须是数值的0,1。因为在代码中设定的就是这样子的,至于你问我为什么不能是字符,那是因为我还没能耐写字符的。

VarX:你要分析的变量(数值的哈)

NBins:分几段分析。结果的例子是分了5段;

Method:怎么分。1-等高度分,2-等宽度分。我的结果图那个是按2分的。

DSChc:结果数据集的输出名字。

02

proc sort data=&DSin;by
&VarX;run;

Data temp;

set &DSin ;

by &VarX;

_Obs=_N_;

keep &DVVAr
&VarX _Obs;

run;

将原数据集中的变量排序,后面的分组的时候要用到。然后保留要分析的变量在temp数据集中,产生变量_Obs,作为序号,这是等高度分析的时候要用的。等高度的意思就是每个区间的数量是一样的,等宽度的意思是,区间的的差值是一样的。两个不同的情况,在分析的时候,如果等宽的结果你觉得不是很明显可以分析的话,就换等高,任意切换哈。

temp的数据集是长这样子的:

_obs是观测的序号。

03

proc sql noprint;

%if &Method=1 %then
%do;

select count(&DVVar)
into :N from temp;

select max(_Obs), min(_Obs) into :Vmax,
:Vmin from temp;

%let
BinSize=%sysevalf((&Vmax)/&Nbins);

%let LB_1=0;

%do i=1 %to
%eval_r(&Nbins-1);

%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);

%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
_obs>=&&Lb_&i
and
_obs<&&Ub_&i;

%end;

%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);

%let
UB_&NBins=&Vmax;

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
_obs>=LB_&i. and
_obs<=UB_&i.;

%end;

%else %do ;

select count(&DVVar)
into :N from temp;

select max(&VarX),
min(&VarX) into :Vmax, :Vmin from temp;

%let
BinSize=%sysevalf((&Vmax-&Vmin)/&Nbins);

%let LB_1=&Vmin;

%do i=1 %to
%eval_r(&Nbins-1);

%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);

%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
&VarX>=&&Lb_&i
and
&VarX<&&Ub_&i;

%end;

%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);

%let
UB_&NBins=&Vmax;

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
&VarX>=&&Lb_&i
and
&VarX<=&&UB_&i;

%end;

quit;

我知道你肯定要说,这密密麻麻的%
&*我不想看。但是你看下嘛,不难的,我介绍介绍给你看嘛。

首先这段代码需要分成两步来看,第一步是当我们的&Method=1
的情况执行do后面的程序,反之,则是当我们的&Method=2的时候的情况啦。

然后我们来讲&Method=1情况时执行的代码:

select count(&DVVar)
into :N from temp;

select max(_Obs), min(_Obs) into :Vmax,
:Vmin from temp;

第一个select赋值宏是算出全部的观测数。

第二个select是算出最大的那个序号,其实我个人觉得这步有点多
余,你想直接用n也可以的,只是我想跟&Method=2的思路一样,所以就没删。

%let
BinSize=%sysevalf((&Vmax)/&Nbins);

%let LB_1=0;

%do i=1 %to
%eval_r(&Nbins-1);

%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);

%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
_obs>=&&Lb_&i
and
_obs<&&Ub_&i;

%end;

BinSize因为是&Method=1,所以这里BinSize是区间的差值,这里有个宏函数%sysevalf就自己百度下用法吧,这里就不介绍了。%do
i=1 %to
%eval_r(&Nbins-1);这一步就开始循环,这里为什么只循环到倒数第二个呢,是因为倒数第一个直接就是剩下的全部,就不需要再区间限制了。

%let
LB_&i=%sysevalf(&LB_1
(&i-1)*&BinSize);

%let
UB_&i=%sysevalf(&&LB_&i
&BinSize);

这两步是产生这个分组的上下区间,然后用于后面的select语句中的where条件,把该区间的数量统计出来。

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
_obs>=&&Lb_&i
and
_obs<&&Ub_&i;

%end;

这个过程特别注意的就是sum(&DVVar),是用sum,这就是我一开始为什么说因变量是二元的,而且要是0,1的情况就是方便这里统计啦。

%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);

%let
UB_&NBins=&Vmax;

select sum(&DVVar) ,
count(*) into :Sum_&i , :N_&i from
temp

where
_obs>=LB_&i. and
_obs<=UB_&i.;

%end;

这就是第四步啦,

%let
LB_&NBins=%sysevalf(&LB_1
(&NBins-1)*&BinSize);

%let
UB_&NBins=&Vmax;

产生最后的区间,这里的i是5了,其实我一直很不能理解到这步,为什么还可以输出i=5呢,不是i只循环到4吗?但是执行的时候就是这样子的,这个套路是仿照之前的等高度分变量区间的那个代码写的。

我还特地看了日志也循环了:

我觉得应该是sas的处理流程,在pdv层面应该可以解释,跪求大神在留言区解释。万分感激。

那么&Method=2的部分就留给你自己去看啦,还是&Method=1的那种套路,只是等区间变量等量而已。

04

data &DSChc;

%do i=1 %to &NBins;

Bin=&i;

LowerBound=&&LB_&i;

UpperBound=&&UB_&i;

if
(&&sum_&i =. ) then
N_1=0; else
N_1=&&Sum_&i;

if
&&N_&i=. then
BinTotal=0; else
BinTotal=&&N_&i;

N_0 = BinTotal-N_1;

Percent_1=100*N_1/BinTotal;

Percent_0=100*N_0/BinTotal;

output;

%end;

Run;

然后这部分就是以上产生的宏,拼接成结果数据集。这里应该注意的是,每循环一个,就是产生一条观测之后output到数据集,如此循环之后需知道i=&nbins为止。数据分析师培训

sas单变量的特征分析的更多相关文章

  1. R 单变量重命名与删除

    单变量重命名 b = rename(b,c(target="flag")) 单变量删除    b = b[,names(b)!='age'] 或者 b[,"age&quo ...

  2. 机器学习之单变量线性回归(Linear Regression with One Variable)

    1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住 ...

  3. Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)

    本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...

  4. MATLAB 单变量函数一阶及N阶求导

    1 对一维函数的求导及求特定函数处的变量值 %%最简单的一阶单变量函数进行求导 function usemyfunArray() %主函数必须位于最上方 clc clear syms x %syms ...

  5. 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)

    面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 ...

  6. [数据可视化之一]Pandas单变量画图

    Pandas单变量画图 Bar Chat Line Chart Area Chart Histogram df.plot.bar() df.plot.line() df.plot.area() df. ...

  7. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

  8. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  9. python 单变量线性回归

      单变量线性回归(Linear Regression with One Variable)¶ In [54]: #初始化工作 import random import numpy as np imp ...

随机推荐

  1. SqlSugar入门级教程+实例 (.net core下的)

    官方参考:http://www.codeisbug.com/Doc/8 前言:这应该是目前最好用的ORM框架之一了,而且支持.net core,网上除了官方文档其他参考就少了点,自己整理了一下,大致包 ...

  2. 尚学linux课程---8、rpm软件包安装

    尚学linux课程---8.rpm软件包安装 一.总结 一句话总结: rpm安装软件包的话要解决依赖问题,推荐使用yum安装软件包 1.比如cd /home中的斜线表示什么意思? 表示根目录,linu ...

  3. Mysql保留字列表

      Mysql保留字列表.吠品整理. 尝试使用一个识别符,例如使用嵌入式MySQL 数据类型或函数名作为表名或列名,例如TIMESTAMP 或GROUP,会造成一个常见问题.允许你这样操作( 例如,A ...

  4. Java-Maven-pom.xml-project-dependencies:dependencies

    ylbtech-Java-Maven-pom.xml-project-dependencies:dependencies 1.java 调用ddl <!-- java 调用ddl --> ...

  5. css3 鼠标悬浮动画效果

    CSS3案例 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <ti ...

  6. 【题解】P1440 均分纸牌

    均分纸牌 题目描述: 有\(N\)堆纸牌,编号分别为\(1,2,-,N\).每堆上有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为\(1\)堆上取 ...

  7. 19.SimLogin_case02

    # 模拟登录马蜂窝 import requests from lxml import etree session = requests.Session() phone_number = input(' ...

  8. easyui combotree的使用示例

    一.View: 1.定义输入控件 <input id="ParentId" name="ParentId"> 2.绑定combotree $('#P ...

  9. java ajax长连接请求服务器数据

    Servlet 3.0笔记之异步请求Comet推送长轮询(long polling)篇 Comet另一种形式为长轮询(long polling),客户端会与服务器建立一个持久的连接,直到服务器端有数据 ...

  10. Nand Flash 控制器中的硬件 ECC 介绍

    ECC 产生方法 ECC 是用于对存储器之间传送数据正确进行校验的一种算法,分硬件 ECC 和软件 ECC 算法两种,在 S3C2410 的 Nand Flash 控制器中实现了由硬件电路(ECC 生 ...