BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏
Time Limit: 5 Sec Memory Limit: 162 MB
Submit: 957 Solved: 394
[Submit][Status][Discuss]
Description
小H和小Z正在玩一个取石子游戏。 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,
每次取石子的个数有限制,谁不能取石子时就会输掉游戏。 小H先进行操作,他想问你他是否有必胜策略,如果有
,第一步如何取石子。
Input
输入文件的第一行为石子的堆数N
接下来N行,每行一个数Ai,表示每堆石子的个数 接下来一行为每次取石子个数的种类数M
接下来M行,每行一个数Bi,表示每次可以取的石子个数,
输入保证这M个数按照递增顺序排列。
N≤10 Ai≤1000
对于全部数据,M≤10,Bi≤10
Output
输出文件第一行为“YES”或者“NO”,表示小H是否有必胜策略。
若结果为“YES”,则第二行包含两个数,第一个数表示从哪堆石子取,第二个数表示取多少个石子,
若有多种答案,取第一个数最小的答案,
若仍有多种答案,取第二个数最小的答案。
Sample Input
4
7
6
9
3
2
1
2
Sample Output
YES
1 1
Hint
样例中共有四堆石子,石子个数分别为7、6、9、3,每人每次可以从任何一堆石子中取出1个或者2个石子,小H有
必胜策略,事实上只要从第一堆石子中取一个石子即可。
解题思路
简单的SG函数。首先暴力求出所有的SG函数值,异或即可。结果本蒟蒻因为最后输出方案时,
位运算没有加括号调了半天。。
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 15;
const int MAXN = 1005;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0' && ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
int n,m,f[N],a[N],ans;
int sg[MAXN],MAX=-1;
bool vis[MAXN];
inline void get_SG(){
for(register int i=1;i<=MAX;i++){
memset(vis,false,sizeof(vis));
for(register int j=1;f[j]<=i;j++)
vis[sg[i-f[j]]]=1;
for(register int j=0;j<=N;j++)
if(!vis[j]) {
sg[i]=j;
break;
}
}
}
int main(){
memset(f,0x3f,sizeof(f));
n=rd();
for(register int i=1;i<=n;i++) a[i]=rd(),MAX=max(a[i],MAX);
m=rd();
for(register int i=1;i<=m;i++) f[i]=rd();
get_SG();
// for(register int i=1;i<=n;i++) cout<<a[i]<<" "<<sg[a[i]]<<endl;
for(register int i=1;i<=n;i++) ans^=sg[a[i]];
if(!ans) puts("NO");
else {
puts("YES");
for(register int i=1;i<=n;i++)
for(register int j=1;j<=m;j++)
if(a[i]>=f[j] && (sg[a[i]-f[j]]^ans^sg[a[i]])==0){
printf("%d %d",i,f[j]);
return 0;
}
}
return 0;
}
BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏的更多相关文章
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]
小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)
Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 871 Solved: 365[Submit][Status][Discuss] Description ...
- [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】
题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...
- bzoj 1874: [BeiJing2009 WinterCamp]取石子游戏【博弈论】
先预处理出来sg值,然后先手必败状态就是sg[a[i]]的xor和为0(nim) 如果xor和不为0,那么一定有办法通过一步让xor和为0,具体就是选一个最大的sg[a[i]],把它去成其他sg值的x ...
- 1874: [BeiJing2009 WinterCamp]取石子游戏 - BZOJ
Description小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问 ...
- bzoj1874 [BeiJing2009 WinterCamp]取石子游戏
1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 925 Solved: 381[ ...
- [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论
取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...
- 【博弈论】【SG函数】【枚举】bzoj1874 [BeiJing2009 WinterCamp]取石子游戏
枚举第一步可能达到的状态,判断是否是必败态即可. #include<cstdio> #include<set> #include<cstring> using na ...
- [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数
Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...
随机推荐
- [SNOI 2017] 炸弹
题目描述: 给定炸弹和爆炸范围,求对于每个炸弹连锁爆炸的炸弹总和对\(1e9+7\)取膜 思路: 为啥都是线段树+TS+tarjan呢? 实在是搞不懂~~ 线性\(O(n)\)递推即可. #inclu ...
- servlet的抽取
servlet的抽取 servlet按照模块来划分,比如注册和登录的servlet就放到user的servlet中 原来: 登录时登录的servlet 注册时注册的servlet 现在: 登录注册的s ...
- OpenLayers的view与layer:控制显示内容
view与layer都可以进行显示内容的控制.这两者负责的功能是由区别的. view即显示的地图容器,有以下几个属性: center:[经度,纬度] ,对应的设置函数为view.setCenter() ...
- 一次性安装python常用模块
链接:https://pan.baidu.com/s/1fuIxRUnkJJfzgrbQ8kIgvw 提取码:d1r6 电脑必须是win64才可以安装 Anaconda3安装完成后,不需要自己添加环境 ...
- 基于IDEA的SSM配置文件整合基础(有步骤)
今天进行了SSM框架的整合,遇到了很多的错误,但所幸都有解决,以下为基础的整合步骤,后续待完善 1.SSM整合所需要: spring的jar(包含tx).springmvc的jar.mybatis.j ...
- .net Cache的用法
HttpContext.Current.Cache 使用方法 .net Cache 怎么使用 /// <summary> /// 简单创建/修改Cache,前提是这个值是字符 ...
- 安卓中 使用html来使文字变色Html.fromHtml
在这里 我是用的html使文字的个别颜色变红 String textStr = " 本课程为<font color=\"#FF0000\">" + ...
- 常见的React面试题
1.redux中间件 答:中间件提供第三方插件的模式,自定义拦截 action -> reducer 的过程.变为 action -> middlewares -> reducer ...
- WJMZBMR打osu! / Easy
WJMZBMR打osu! / Easy 有一个由o,x,?组成的长度为n的序列,?等概率变为o,x,定义序列权值为连续o的长度o的平方之和,询问权值的期望, 解 注意到权值不是简单的累加关系,存在平方 ...
- LoadRunner添加Weblogic监控的注意事项(非单纯的操作步骤)
LoadRunner添加Weblogic监控的注意事项(非单纯的操作步骤) 关于LR如何监控Weblogic(JMX方式)的操作就不在这里多说了,帮助文件和网上的介绍已经非常多了,关键是对各操作步 ...