题目链接

BZ链接

这道题被很多人用spfa水了过去,表示很。。。

其实spfa很好卡,这组数据可以卡掉大多数spfa

链接:密码:rjvk

这里讲一下LCT的做法

我们按照a将边排序,然后依次添加

每次加入时若两边没有联通,就直接加入,否则就

检查两边的路径中权值b最大的权值是多少,如果大于当前加入边的权值

就将该边删掉,然后将当前边加入

注意lct维护边权时需要用到拆点

# include<iostream>
# include<algorithm>
# include<cmath>
# include<cstring>
# include<cstdio>
using namespace std;
const int mn = ;
const int inf = ;
struct edge{int u,v,a,b;};
edge e[mn];
bool cmp(const edge &x,const edge &y)
{
if(x.a==y.a) return x.b<y.b;
else return x.a<y.a;
}
int n,m,ans,fa[mn];
int _find(int x) {return x==fa[x] ? x : fa[x]=_find(fa[x]);}
struct LCT{
int val[mn],fa[mn],c[mn][],mx[mn],st[mn];
//mx[x]表示子树中权值最大的点的编号
bool rev[mn];
bool nroot(int x)
{
return c[fa[x]][]==x || c[fa[x]][]==x;
}
void zhuan(int x)
{
swap(c[x][],c[x][]);
rev[x]^=;
}
void pushdown(int x)
{
if(rev[x])
{
rev[x]=;
if(c[x][]) zhuan(c[x][]);
if(c[x][]) zhuan(c[x][]);
}
}
void updown(int x)
{
mx[x]=x;
if(c[x][])
{
if(val[mx[c[x][]]]>val[mx[x]])
mx[x]=mx[c[x][]];
}
if(c[x][])
{
if(val[mx[c[x][]]]>val[mx[x]])
mx[x]=mx[c[x][]];
}
}
void rotate(int x)
{
int y=fa[x],z=fa[y],flag;
if(c[y][]==x) flag=;
else flag=;
if(nroot(y))
{
if(c[z][]==y) c[z][]=x;
else c[z][]=x;
}
c[y][flag^]=c[x][flag],fa[c[x][flag]]=y;
c[x][flag]=y;
fa[y]=x,fa[x]=z;
updown(y);
updown(x);
}
void splay(int x)
{
int top=;
st[++top]=x;
for(int i=x;nroot(i);i=fa[i])
st[++top]=fa[i];
for(;top;top--) pushdown(st[top]);
while(nroot(x))
{
int y=fa[x],z=fa[y];
if(nroot(y))
{
if((c[y][]==x) ^ (c[z][]==y))
rotate(x);
else rotate(y);
}
rotate(x);
}
updown(x);
}
void access(int x)
{
int t=;
while(x){splay(x);c[x][]=t;updown(x);t=x;x=fa[x];}
}
void makeroot(int x)
{
access(x);
splay(x);
zhuan(x);
}
void link(int x,int y)
{
makeroot(x);
fa[x]=y;
}
void cut(int x,int y)
{
makeroot(x);
access(y);
splay(y);
c[y][]=fa[x]=;
updown(y);
}
int query(int x,int y)
{
makeroot(x);
access(y);
splay(y);
return mx[y];
}
}T;
void pre()
{
for(int i=;i<=n;i++)
fa[i]=i;
for(int i=;i<=m;i++)
T.val[i+n]=e[i].b;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d%d",&e[i].u,&e[i].v,&e[i].a,&e[i].b);
sort(e+,e++m,cmp);
ans=inf;
pre();
/* for(int i=1;i<=m;i++)
printf("%d %d\n",e[i].a,e[i].b);*/
for(int i=;i<=m;i++)
{
int x=e[i].u,y=e[i].v;
int xx=_find(x),yy=_find(y);
if(xx!=yy)
{
fa[xx]=yy;
T.link(x,i+n);
T.link(i+n,y);
}
else {
int k=T.query(x,y);
if(T.val[k]>e[i].b)
{
T.cut(e[k-n].u,k);
T.cut(k,e[k-n].v);
T.link(x,i+n);
T.link(i+n,y);
}
}
if(_find()==_find(n))
ans=min(ans,e[i].a+T.val[T.query(,n)]);
// printf("%d %d\n",e[i].a,T.query(1,n));
}
if(ans==inf) printf("-1");
else printf("%d",ans);
return ;
}

洛谷2387 BZOJ3669魔法森林题解的更多相关文章

  1. 洛谷 2387 NOI2014魔法森林 LCT

    [题解] 我们先把边按照$a$值从小到大排序,并按照这个顺序加边. 如果当前要加入的边连接的两点$u$与$v$已经是连通的,那么直接加入这条边就会出现环.这时我们需要删除这个环中$b$值最大的边.因此 ...

  2. 洛谷2387 NOI2014魔法森林(LCT维护最小生成树)

    本题是运用LCT来维护一个最小生成树. 是一个经典的套路 题目中求的是一个\(max(a_i)+max(b_i)\)尽可能小的路径. 那么这种的一个套路就是,先按照一维来排序,然后用LCT维护另一维 ...

  3. 洛谷P2387 [NOI2014]魔法森林(lct维护最小生成树)

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  4. 洛谷 P2387 [NOI2014]魔法森林 解题报告

    P2387 [NOI2014]魔法森林 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2 ...

  5. 洛谷P2387 [NOI2014]魔法森林(LCT)

    魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于 ...

  6. 洛谷P2387 [NOI2014]魔法森林(LCT,Splay)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  7. 洛谷P2387 [NOI2014]魔法森林(LCT)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  8. 【洛谷P2387】魔法森林

    题目大意:给定一个 N 个点,M 条边的无向图,边有两个边权 a, b,求从 1 号节点到 N 号节点路径的两个权值和的最大值最小是多少. 题解: 对于有两个属性的结构的最优化问题,可以考虑先按照其中 ...

  9. 洛谷P1783 海滩防御 分析+题解代码

    洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...

随机推荐

  1. storm的安装

    一. 安装storm要先本机搭建好zookeeper集群(手动目录安装或者CDH安装) 二. Java 6 Python 2.6.6 unzip(针对使用语言要安装好相应环境 比如java 要JDK和 ...

  2. 创建Hadoop用户

  3. LeetCode409Longest Palindrome最长回文串

    给定一个包含大写字母和小写字母的字符串,找到通过这些字母构造成的最长的回文串. 在构造过程中,请注意区分大小写.比如 "Aa" 不能当做一个回文字符串. 注意: 假设字符串的长度不 ...

  4. Gym - 102082G

    Gym - 102082Ghttps://vjudge.net/problem/2198225/origin对于数列中任意一个数,要么从最左边到它不递减,要么从最右边到到它不递减,为了满足这个条件,就 ...

  5. html转换成pdf

    指定html转换成pdf 安装插件: npm install --save html2canvas npm install jspdf --save 引入 plugins/ htmlToPdf.js ...

  6. centos6.5 zabbix2.2 亲测安装

    因为需要做测试,调试.需要安装zabbix.  然后自己新弄了一个 centos6.5 minimal版本,从头来了一遍. 1.先安装LAMP的环境还有一些基本环境. yum -y install g ...

  7. Python实例 遍历文件夹和文件

    import  os import  os.path #  os,os.path里包含大多数文件访问的函数,所以要先引入它们. #  请按照你的实际情况修改这个路径 rootdir  =   &quo ...

  8. Liferay 7:如何在Liferay Portlet中使用Angular, React, Vue.js等前端框架

    https://web.liferay.com/zh/web/ivan.zaera/blog/-/blogs/modern-frontend-workflows-in-liferay-portal L ...

  9. Django项目:CRM(客户关系管理系统)--01--01PerfectCRM基本配置ADMIN01

    一.CRM项目需求 二.CRM项目新建 PerfectCRM crm

  10. Windows 调用OpenProcess失败

    OpenProcess 打开|获得进程句柄 函数原型: HANDLE OpenProcess(DWORD dwDesiredAccess,BOOL bInheritHandle,DWORD dwPro ...