正解:最大值分治

解题报告:

传送门$QwQ$

昂考虑如果已经钦定了点$x$是这个$max$了,然后现在要求有多少对$[l,r]$满足$a_x=max\left\{a_i\right\},i\in[l,r]$,且$a_l\cdot a_r\leq a_x$

现在枚举$l$,发现$r$就有一个范围了,就$a_r\leq \frac{a_x}{a_l}$,这个就可以用主席树维护下就成嘛$QwQ$(我开始想用树状数组的,,,然后想了下发现因为是分治所以每次树状数组都要重建复杂度是错的$kk$,所以还是去用主席树趴$QwQ$

所以就基本上能得出这题的基本思路了?首先找到区间最大值$x$,先分别求出$x$两侧的答案,然后统计跨过$x$的贡献.考虑枚举$l$,然后对于$r$就直接树状数组搞下就行.但是发现如果$l$中的点太多也不可,所以考虑枚举$size$较小的那一边.

这个的复杂度和启发式合并的复杂度是一样的,就$O(nlogn)$,然后加上树状数组的复杂度,总复杂度就两个$log$的

$over$?

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define mp make_pair
#define int long long
#define ri register int
#define rc register char
#define rb register bool
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define lb(x) lower_bound(b+1,b+1+num,x)-b
#define ub(x) upper_bound(b+1,b+1+num,x)-b const int N=1e5+;
int n,a[N],b[N],st[][N],num,rt[N],nod_cnt,lg[N];
struct node{int num,ls,rs;}tr[N*]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il int cmp(ri gd,ri gs){return a[gd]>=a[gs]?gd:gs;}
il void pre()
{
lg[]=-;rp(i,,n)st[][i]=i,lg[i]=lg[i>>]+;
rp(i,,lg[n])
rp(j,,n-(<<i)+)st[i][j]=cmp(st[i-][j],st[i-][j+(<<(i-))]);
}
il int ask(ri l,ri r){ri len=lg[r-l+];return cmp(st[len][l],st[len][r-(<<len)+]);}
int modify(ri nw,ri l,ri r,ri to)
{
ri x=++nod_cnt;tr[x]=tr[nw];++tr[x].num;if(l==r)return x;
ri mid=(l+r)>>;to<=mid?tr[x].ls=modify(tr[nw].ls,l,mid,to):tr[x].rs=modify(tr[nw].rs,mid+,r,to);
return x;
}
int query(ri nw,ri l,ri r,ri to)
{
if(r<=to)return tr[nw].num;
ri mid=(l+r)>>,ret=query(tr[nw].ls,l,mid,to);
if(mid<to)ret+=query(tr[nw].rs,mid+,r,to);
return ret;
}
int solv(ri l,ri r)
{
if(l>r)return ;
if(l==r)return b[a[l]]==;
ri mid=ask(l,r),sum=;sum+=solv(l,mid-);sum+=solv(mid+,r);//printf("l=%d r=%d sum=%d mid=%d solv(%d,%d),solv(%d,%d)\n",l,r,sum,mid,l,mid-1,mid+1,r);
ri tl=l,tr=mid,askl=mid,askr=r;if(mid-l+>r-mid)swap(tl,askl),swap(tr,askr);
//printf("tl=%d tr=%d askl=%d askr=%d\n",tl,tr,askl,askr);
rp(i,tl,tr)
{
ri lim=ub(b[a[mid]]/b[a[i]])-;if(lim)sum+=query(rt[askr],,num,lim)-query(rt[askl-],,num,lim);
}
//printf("l=%d r=%d sum=%d\n",l,r,sum);
return sum;
} signed main()
{
//freopen("4755.in","r",stdin);freopen("4755.out","w",stdout);
n=read();rp(i,,n)a[i]=b[i]=read();sort(b+,b++n);num=unique(b+,b++n)-b-;
rp(i,,n)a[i]=lb(a[i]),rt[i]=modify(rt[i-],,num,a[i]);
pre();printf("%lld\n",solv(,n));
return ;
}

洛谷$P4755\ Beautiful\ Pair$ 最大值分治的更多相关文章

  1. 洛谷 P4755 - Beautiful Pair(主席树+分治+启发式优化)

    题面传送门 wssb,我紫菜 看到这类与最大值统计有关的问题可以很自然地想到分治,考虑对 \([l,r]\) 进行分治,求出对于所有 \(l\le x\le y\le r\) 的点对 \((x,y)\ ...

  2. P4755 Beautiful Pair

    题目 洛谷 做法 \(i≤x≤j,a[i]<\frac{a[x]}{a[j]}\) 考虑\(a[x]\)的贡献,单调栈预处理\(L,R\)能作为最大值的区间 枚举一端点,仅需另一端点满足条件即可 ...

  3. luogu P4755 Beautiful Pair

    luogu 这题有坨区间最大值,考虑最值分治.分治时每次取出最大值,然后考虑统计跨过这个位置的区间答案,然后两边递归处理.如果之枚举左端点,因为最大值确定,右端点权值要满足\(a_r\le \frac ...

  4. 洛谷4755 Beautiful Pair (分治)

    题目描述 小D有个数列 \(a\),当一个数对 \((i,j)(i\le j)\) 满足\(a_i\)和\(a_j\)的积 不大于 \(a_i \cdots a_j\) 中的最大值时,小D认为这个数对 ...

  5. 【题解】P4755 Beautiful Pair(启发式合并的思路+分治=启发式分治)

    [题解]P4755 Beautiful Pair upd: 之前一个first second烦了,现在AC了 由于之前是直接抄std写的,所以没有什么心得体会,今天自己写写发现 不知道为啥\(90\) ...

  6. [luogu4755]Beautiful Pair

    [luogu4755]Beautiful Pair luogu 第一次写最大值分治感觉有点丑 每次找到最大值mid,扫小的一边,主席树查大的一边小于等于\(\frac{a[mid]}{a[i]}\)的 ...

  7. BZOJ3711 Druzyny 最大值分治、线段树

    传送门 被暴力包菜了,然而还不会卡-- 有一个很暴力的DP:设\(f_i\)表示给\(1\)到\(i\)分好组最多可以分多少组,转移枚举最后一个组.接下来考虑优化这个暴力. 考虑:对于每一个位置\(i ...

  8. 「LGR-049」洛谷7月月赛 D.Beautiful Pair

    「LGR-049」洛谷7月月赛 D.Beautiful Pair 题目大意 : 给出长度为 \(n\) 的序列,求满足 \(i \leq j\) 且 $a_i \times a_j \leq \max ...

  9. P4755 Beautiful Pair (分治 + 主席树)

    题意:1e5的数组 计算有多少对 ai * aj <= max(ai ai+1...aj-1 aj) 题解:在处理这种涉及到区间极值的题时 好像是个套路分治 从级值中间分成两个区间 从区间短的那 ...

随机推荐

  1. IoT SaaS加速器——助力阿尔茨海默病人护理

    场景介绍 阿尔茨海默病,是导致中老年人认知功能障碍的最常见疾病之一,是发生在老年期及老年前期的一种原发性退行性脑病.据估计,全世界痴呆症患者数量为4700万,到2030年将达到7500万人.痴呆症患者 ...

  2. Serverless助力AI计算:阿里云ACK Serverless/ECI发布GPU容器实例

    ACK Serverless(Serverless Kubernetes)近期基于ECI(弹性容器实例)正式推出GPU容器实例支持,让用户以serverless的方式快速运行AI计算任务,极大降低AI ...

  3. Python type hints 之 Optional,Union

    1,前言 type hint 在pep484加入,我个人觉得这种类似于类型约束的(机制)有点违背了python简单.简洁的初衷,在慢慢向c# java 这种强类型语言看齐的节奏. 不过好在不强制使用, ...

  4. 如何在SpringMVC项目中部署WebService服务并打包生成客户端

    场景 某SpringMVC项目原本为一个HTTP的WEB服务项目,之后想在该项目中添加WebService支持,使该项目同时提供HTTP服务和WebService服务.其中WebService服务通过 ...

  5. 【codeforces 789A】Anastasia and pebbles

    [题目链接]:http://codeforces.com/contest/789/problem/A [题意] 有n种物品,每种物品有wi个; 你有两个口袋,每个口袋最多装k个物品; 且口袋里面只能装 ...

  6. php_sphinx安装使用

    Sphinx的简介: Sphinx是一个独立的全文索引引擎,意图为其他应用提供高速.低空间 占用.搜索结果高相关度的全文搜索功能.Sphinx可以非常容易的与 SQL数据库和脚本语言集成.内置MySQ ...

  7. 【9001】Internet消息发布

    Time Limit: 1 second Memory Limit: 256 MB 问题描述 设Internet上有N个站点,通常从一个站点发送消息给其他N-1个站点,需依次发送N-1次.这样从一个站 ...

  8. 机器学习——EM

    整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 EM算法是用于含有隐变 ...

  9. WPF 元素裁剪 Clip 属性

    本文介绍如何在 WPF 使用 Clip 裁剪元素 在 WPF 的 UIElement 提供了 Clip 属性,这个属性默认是空,但是如果设置了这个属性就会对元素进行裁剪 这个属性是一个 Geometr ...

  10. EJB版本

    1999: ejb version 1.1 -- j2ee 1.22001: ejb version 2.0 -- j2ee 1.32003: ejb version 2.1 -- j2ee 1.42 ...