池化层(Pooling layers)

除了卷积层,卷积网络也经常使用池化层来缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们来看一下。

 

先举一个池化层的例子,然后我们再讨论池化层的必要性。假如输入是一个4×4矩阵,用到的池化类型是最大池化(max pooling)。执行最大池化的树池是一个2×2矩阵。执行过程非常简单,把4×4的输入拆分成不同的区域,我把这个区域用不同颜色来标记。对于2×2的输出,输出的每个元素都是其对应颜色区域中的最大元素值。

左上区域的最大值是9,右上区域的最大元素值是2,左下区域的最大值是6,右下区域的最大值是3。为了计算出右侧这4个元素值,我们需要对输入矩阵的2×2区域做最大值运算。这就像是应用了一个规模为2的过滤器,因为我们选用的是2×2区域,步幅是2,这些就是最大池化的超参数。

因为我们使用的过滤器为2×2,最后输出是9。然后向右移动2个步幅,计算出最大值2。然后是第二行,向下移动2步得到最大值6。最后向右移动3步,得到最大值3。这是一个2×2矩阵,即f=2,步幅是2,即s=2。

 

这是对最大池化功能的直观理解,你可以把这个4×4输入看作是某些特征的集合,也许不是。你可以把这个4×4区域看作是某些特征的集合,也就是神经网络中某一层的非激活值集合。

数字大意味着可能探测到了某些特定的特征,左上象限具有的特征可能是一个垂直边缘,一只眼睛,或是大家害怕遇到的CAP特征。显然左上象限中存在这个特征,这个特征可能是一只猫眼探测器。然而,右上象限并不存在这个特征。最大化操作的功能就是只要在任何一个象限内提取到某个特征,它都会保留在最大化的池化输出里。所以最大化运算的实际作用就是,如果在过滤器中提取到某个特征,那么保留其最大值。如果没有提取到这个特征,可能在右上象限中不存在这个特征,那么其中的最大值也还是很小,这就是最大池化的直观理解。

必须承认,人们使用最大池化的主要原因是此方法在很多实验中效果都很好。尽管刚刚描述的直观理解经常被引用,不知大家是否完全理解它的真正原因,不知大家是否理解最大池化效率很高的真正原因。

其中一个有意思的特点就是,它有一组超参数,但并没有参数需要学习。实际上,梯度下降没有什么可学的,一旦确定了f和s,它就是一个固定运算,梯度下降无需改变任何值。

我们来看一个有若干个超级参数的示例,输入是一个5×5的矩阵。我们采用最大池化法,它的过滤器参数为3×3,即f=3,步幅为1,s=1,输出矩阵是3×3。之前讲的计算卷积层输出大小的公式同样适用于最大池化,即(n+2p-f)/s+1,这个公式也可以计算最大池化的输出大小。

 

此例是计算3×3输出的每个元素,我们看左上角这些元素,注意这是一个3×3区域,因为有3个过滤器,取最大值9。然后移动一个元素,因为步幅是1,蓝色区域的最大值是9.继续向右移动,蓝色区域的最大值是5。然后移到下一行,因为步幅是1,我们只向下移动一个格,所以该区域的最大值是9。这个区域也是9。这两个区域的最大值都是5。最后这三个区域的最大值分别为8,6和9。超参数f=3,s=1,最终输出如图所示。

 

以上就是一个二维输入的最大池化的演示,如果输入是三维的,那么输出也是三维的。例如,输入是5×5×2,那么输出是3×3×2。计算最大池化的方法就是分别对每个通道执行刚刚的计算过程。如上图所示,第一个通道依然保持不变。对于第二个通道,我刚才画在下面的,在这个层做同样的计算,得到第二个通道的输出。一般来说,如果输入是5×5×n_c,输出就是3×3×n_c,n_c个通道中每个通道都单独执行最大池化计算,以上就是最大池化算法。

 

另外还有一种类型的池化,平均池化,它不太常用。我简单介绍一下,这种运算顾名思义,选取的不是每个过滤器的最大值,而是平均值。示例中,紫色区域的平均值是3.75,后面依次是1.25、4和2。这个平均池化的超级参数f=2,s=2,我们也可以选择其它超级参数。

 

目前来说,最大池化比平均池化更常用。但也有例外,就是深度很深的神经网络,你可以用平均池化来分解规模为7×7×1000的网络的表示层,在整个空间内求平均值,得到1×1×1000,一会我们看个例子。但在神经网络中,最大池化要比平均池化用得更多。

总结一下,池化的超级参数包括过滤器大小f和步幅s,常用的参数值为f=2,s=2,应用频率非常高,其效果相当于高度和宽度缩减一半。也有使用f=3,s=2的情况。至于其它超级参数就要看你用的是最大池化还是平均池化了。你也可以根据自己意愿增加表示padding的其他超级参数,虽然很少这么用。最大池化时,往往很少用到超参数padding,当然也有例外的情况,我们下周会讲。大部分情况下,最大池化很少用padding。目前p最常用的值是0,即p=0。最大池化的输入就是n_H×n_W×n_c,假设没有padding,则输出⌊(n_H-f)/s+1⌋×⌊(n_w-f)/s+1⌋×n_c。输入通道与输出通道个数相同,因为我们对每个通道都做了池化。需要注意的一点是,池化过程中没有需要学习的参数。执行反向传播时,反向传播没有参数适用于最大池化。只有这些设置过的超参数,可能是手动设置的,也可能是通过交叉验证设置的。

除了这些,池化的内容就全部讲完了。

最大池化只是计算神经网络某一层的静态属性,没有什么需要学习的,它只是一个静态属性

关于池化我们就讲到这儿,现在我们已经知道如何构建卷积层和池化层了。下节课,我们会分析一个更复杂的可以引进全连接层的卷积网络示例。

【37】池化层讲解(Pooling layers)的更多相关文章

  1. tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)

    池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...

  2. 图像处理池化层pooling和卷积核

    1.池化层的作用 在卷积神经网络中,卷积层之间往往会加上一个池化层.池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量.使用池化层即可以加快计算速度也有防止过拟合的作用. 2.为什 ...

  3. 神经网络中的池化层(pooling)

    在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合).为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这 ...

  4. 深入解析CNN pooling 池化层原理及其作用

    原文地址:https://blog.csdn.net/CVSvsvsvsvs/article/details/90477062 池化层作用机理我们以最简单的最常用的max pooling最大池化层为例 ...

  5. tensorflow的卷积和池化层(二):记实践之cifar10

    在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tenso ...

  6. caffe源码 池化层 反向传播

    图示池化层(前向传播) 池化层其实和卷积层有点相似,有个类似卷积核的窗口按照固定的步长在移动,每个窗口做一定的操作,按照这个操作的类型可以分为两种池化层: 输入参数如下: 输入: 1 * 3 * 4 ...

  7. 空间金字塔池化(Spatial Pyramid Pooling, SPP)原理和代码实现(Pytorch)

    想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对 ...

  8. 【深度学习篇】--神经网络中的池化层和CNN架构模型

    一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...

  9. TensorFlow池化层-函数

    池化层的作用如下-引用<TensorFlow实践>: 池化层的作用是减少过拟合,并通过减小输入的尺寸来提高性能.他们可以用来对输入进行降采样,但会为后续层保留重要的信息.只使用tf.nn. ...

随机推荐

  1. LUAMD5加密

    md5里的方法: C:\Windows\System32>lua Lua 5.1.4 Copyright (C) 1994-2008 Lua.org, PUC-Rio > require( ...

  2. virtualbox更新完无法启动的问题(不能为虚拟电脑 Ubuntu 打开一个新任务)

    具体错误: 不能为虚拟电脑 Ubuntu 打开一个新任务. VT-x is disabled in the BIOS. (VERR_VMX_MSR_VMXON_DISABLED). 返回 代码: E_ ...

  3. win10 + cuda10 +cudnn + GLUON 环境搭建

    1. <动手学深度学习> 由于新型非典型肺炎扩散,上班日期挪到2.10 日了,在家比较无聊决定了解一下深度学习. 在github 上找到一个资源,可以动手学深度学习,便打算按照这本书的内容 ...

  4. 机器学习(ML)九之GRU、LSTM、深度神经网络、双向循环神经网络

    门控循环单元(GRU) 循环神经网络中的梯度计算方法.当时间步数较大或者时间步较小时,循环神经网络的梯度较容易出现衰减或爆炸.虽然裁剪梯度可以应对梯度爆炸,但无法解决梯度衰减的问题.通常由于这个原因, ...

  5. BZOJ 3339 Rmq Problem(离线+线段树+mex函数)

    题意: q次询问,问[l,r]子区间的mex值 思路: 对子区间[l,r],当l固定的时候,[l,r]的mex值对r单调不减 对询问按照l离线,对当前的l,都有维护一个线段树,每个叶节点保存[l,r] ...

  6. 第2章 Java并行程序基础(三)

    2.8 程序中的幽灵:隐蔽的错误 2.8.1 无提示的错误案例 以求两个整数的平均值为例.请看下面代码: int v1 = 1073741827; int v2 = 1431655768; Syste ...

  7. Git 分支设计规范

    概述 这篇文章分享 Git 分支设计规范,目的是提供给研发人员做参考. 规范是死的,人是活的,希望自己定的规范,不要被打脸. 在说 Git 分支规范之前,先说下在系统开发过程中常用的环境. 简称 全称 ...

  8. 51nod 1002 数塔取值问题 dp

    动态规划 1002 数塔取数问题 1.0 秒 131,072.0 KB 5 分 1级题   一个高度为N的由正整数组成的三角形,从上走到下,求经过的数字和的最大值. 每次只能走到下一层相邻的数上,例如 ...

  9. 手把手带你阅读Mybatis源码(三)缓存篇

    前言 大家好,这一篇文章是MyBatis系列的最后一篇文章,前面两篇文章:手把手带你阅读Mybatis源码(一)构造篇 和 手把手带你阅读Mybatis源码(二)执行篇,主要说明了MyBatis是如何 ...

  10. typeof和类型转换

    编程形式 ① 面向过程 ② 面向对象 ③ Js既面向过程又面向对象 typeof(数据) 1)typeof(数据)返回该数据是什么类型的 2)写法: ① typeof(数据) ② typeof 数据 ...