传送门

题意:

  农场主 FJ 有 n 头奶牛,现在给你 m 对关系(x,y)表示奶牛x的产奶速率高于奶牛y;

  FJ 想按照奶牛的产奶速率由高到低排列这些奶牛,但是这 m 对关系可能不能精确确定这 n 头奶牛的关系;

  问最少需要额外增加多少对关系使得可以确定这 n 头奶牛的顺序;

题解:

  之所以做这道题,是因为在补CF的题时用到了bitset<>;

  搜这个容器的用法是看到了一篇标题为POJ-3275:奶牛排序Ranking the Cows(Floyd、bitset)的文章;

  正好拿着道题练练bitset<>;

  但是一做,发现,这道题和省赛的L题好像啊,做法完全相同,只是在输出结果上处理了一下;

  下午在补一下如何用bitset<>做这道题,先贴上DFS暴力AC代码;

AC代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=1e3+; int n,m;
int num;
int head[maxn];
struct Edge
{
int to;
int next;
}G[maxn**];
void addEdge(int u,int v)
{
G[num]={v,head[u]};
head[u]=num++;
}
bool vis[maxn]; int DFS(int u)
{
int ans=;
vis[u]=true;
for(int i=head[u];~i;i=G[i].next)
{
int v=G[i].to;
if(vis[v] || (i&))
continue;
ans += DFS(v);
}
return ans;
}
int RDFS(int u)
{
int ans=;
vis[u]=true;
for(int i=head[u];~i;i=G[i].next)
{
int v=G[i].to;
if(vis[v] || !(i&))
continue;
ans += RDFS(v);
}
return ans;
}
int Solve()
{
int ans=;
for(int i=;i <= n;++i)
{
mem(vis,false);
int t1=DFS(i);
mem(vis,false);
int t2=RDFS(i);
///第i头奶牛可以确定的奶牛个数为t1+t2-1
ans += n-(t1+t2-);
}
return ans>>;
}
void Init()
{
num=;
mem(head,-);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
Init();
for(int i=;i <= m;++i)
{
int u,v;
scanf("%d%d",&u,&v);
addEdge(u,v);
addEdge(v,u);
}
printf("%d\n",Solve());
}
return ;
}

思路2:(来自上述链接文章)

  确定这 n 头奶牛的顺序需要 n*(n-1)/2 对关系;

  (X,Y)代表 rankX > rankY

  已知关系 (X,Y),(Y,Z),那么,根据传递性可得隐藏关系(X,Z);

  如何根据给出的m条关系找到所有的隐藏关系呢?

  Floyd传递闭包;

AC代码1:

 #include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=1e3+; int n,m;
bool e[maxn][maxn];
vector<int >in[maxn],out[maxn];
///in[u]:指向u的节点,out[u]:u指出去的节点 int Solve()
{
int ans=;
for(int k=;k <= n;++k)
{
for(int i=;i < in[k].size();++i)
{
for(int j=;j < out[k].size();++j)
{
int u=in[k][i];
int v=out[k][j];
if(!e[u][v])///隐藏关系u->v
{
e[u][v]=true;
out[u].push_back(v);
in[v].push_back(u);
ans++;
}
}
}
}
///m:已知关系对
///ans:隐藏关系对
return n*(n-)/-m-ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i <= m;++i)
{
int u,v;
scanf("%d%d",&u,&v);
in[v].push_back(u);
out[u].push_back(v);
e[u][v]=true;
}
printf("%d\n",Solve()); return ;
}

另一种写法就是用到了bitset<>容器;

bitset<>_bit[];
对于输入的关系<u,v>;
_bit[u].set(v);//将第v为置位1,表示有一条u->v的边

如何找到所有的隐藏关系呢?

for(int i=;i <= n;++i)
for(int j=;j <= n;++j)
if(_bit[j][i])
_bit[j] |= _bit[i];///让j节点指向i节点所有指出去的边

晚上一直困惑,为什么将if()及其之后的语句改为

if(_bit[i][j])
_bit[i] |= _bit[j];

就wa了,找了许久,终于找到了;

对于如下关系:

(①,③) , (③,②) , (②,④)

(①->③->②->④)

当 i = 1 时,如果按照更改后的写法,①只会更新出<①,②>而不会更新出关系<①,④>(纸上画一下就出来了);

所以说,要更新内层循环的节点,这样更新的彻底;

AC代码2:

 #include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
#include<bitset>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=1e3+; int n,m;
bitset<maxn>_bit[maxn]; int Solve()
{
for(int i=;i <= n;++i)
for(int j=;j <= n;++j)
if(_bit[j][i])
_bit[j] |= _bit[i];///让j节点指向i节点所有指出去的边 int ans=;
for(int i=;i <= n;++i)
ans += _bit[i].count(); ///ans:m对已有关系对+隐藏关系对
return n*(n-)/-ans;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i <= m;++i)
{
int u,v;
scanf("%d%d",&u,&v);
_bit[u].set(v);
}
printf("%d\n",Solve()); return ;
}

poj 3275 "Ranking the Cows"(DFS or Floyd+bitset<>)的更多相关文章

  1. POJ 3275 Ranking the Cows(传递闭包)【bitset优化Floyd】+【领接表优化Floyd】

    <题目链接> 题目大意:FJ想按照奶牛产奶的能力给她们排序.现在已知有N头奶牛$(1 ≤ N ≤ 1,000)$.FJ通过比较,已经知道了M$1 ≤ M ≤ 10,000$对相对关系.每一 ...

  2. POJ 3275 Ranking the cows ( Floyd求解传递闭包 && Bitset优化 )

    题意 : 给出 N 头牛,以及 M 个某些牛之间的大小关系,问你最少还要确定多少对牛的关系才能将所有的牛按照一定顺序排序起来 分析 : 这些给出的关系想一下就知道是满足传递性的 例如 A > B ...

  3. POJ 3187 Backward Digit Sums (dfs,杨辉三角形性质)

    FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N < ...

  4. POJ 3621:Sightseeing Cows(最优比率环)

    http://poj.org/problem?id=3621 题意:有n个点m条有向边,每个点有一个点权val[i],边有边权w(i, j).找一个环使得Σ(val) / Σ(w)最大,并输出. 思路 ...

  5. POJ 1330 Nearest Common Ancestors (dfs+ST在线算法)

    详细讲解见:https://blog.csdn.net/liangzhaoyang1/article/details/52549822 zz:https://www.cnblogs.com/kuang ...

  6. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  7. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  8. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  9. 【POJ 2750】 Potted Flower(线段树套dp)

    [POJ 2750] Potted Flower(线段树套dp) Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4566   ...

随机推荐

  1. php表单和缩略图处理类是什么样呢

    <?php//封装一个表单验证类//中文验证.邮箱验证.电话号码.手机.QQ.身份证.(由字母.数字.下划线组成,不能以数字开头)header('content-type:text/html;c ...

  2. Javascript一些要点记录

    1. == 比较,它会自动转换数据类型再比较 === 比较,它不会自动转换数据类型,如果数据类型不一致,返回false 大部分时候应该使用===来比较2. 使用'use strict'来强制通过var ...

  3. MySQL遇到经典例子--(遇到就写)

    1,一般的搜索只会搜索标题,也有特殊的情况,就是标题和内容一起搜索! -- 模糊搜索只是搜索标题 $sql = "select count(*) as sum from publish wh ...

  4. 初探postman

    第一种:安装postman 扩展程序 第二种:本地 安装postman 登陆进来postman的界面 发送第一个postman请求 将请求保存到集合 未完,待续...

  5. Tumblr,instapaper分享

    <div id="bshare-custom"> <a title="分享到Tumblr" id="bshare-tumblr&qu ...

  6. WebSocket简述

    WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议. WebSocket 使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据.在 W ...

  7. C/S和B/S交互 2016-03-19 11:27 1275人阅读 评论(30) 收藏

    最近一直在做C/S的项目,每天都超忙,抽个时间写篇博客,之前一直做C/S项目就是各种窗体,各种控件,拖来拖去,然后点进去写方法,做BS的时候呢,因为一直使用的是mvc,所以就是经常手写代码,或者拖引用 ...

  8. Java练习 SDUT-3849_分数四则运算

    分数四则运算 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 编写程序,实现两个分数的加减法 Input 输入包含多行数 ...

  9. 在laravel框架中使用ajax请求报错419

    laravel框架中报419 419 unknown status 这个时候你需要将这个接口放到api路由上,这样可以跳过CSRF的检查

  10. dataframe添加元素指定为列表,不同for循环命名空间下的变量重复问题

    split=pd.DataFrame({'data':[0],'len':0,'count':0},index=[0])for i_t in range(over_128.shape[0]): ct= ...