keras一个大坑就是配置文件的问题,网上会给很多的误导,让我走了很多弯路。

1、安装keras2

conda install keras

2、环境配置

echo ‘{
"epsilon": 1e-07,
"floatx": "float32",
"image_data_format": "channels_last",
"backend": "theano"
}’> ~/.keras/keras.json

如果用的tensorflow,backend要更换为tensorflow这个变量

3、问题说明

关于环境配置网上大多是1.几的版本,这个与2点几的版本有很大的区别,请大家一定注意。并且keras上了2这个版本后,代码也出现了很多的变化。下面就是对vgg16.py代码关于python2.7+keras2的代码更新

from __future__ import division, print_function

import os, json
from glob import glob
import numpy as np
from scipy import misc, ndimage
from scipy.ndimage.interpolation import zoom from keras import backend as K
from keras.layers.normalization import BatchNormalization
from keras.utils.data_utils import get_file
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout, Lambda
#from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D # Conv2D: Keras2
from keras.layers.pooling import GlobalAveragePooling2D
from keras.optimizers import SGD, RMSprop, Adam
from keras.preprocessing import image # In case we are going to use the TensorFlow backend we need to explicitly set the Theano image ordering
from keras import backend as K
K.set_image_dim_ordering('th') vgg_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32).reshape((3,1,1))
def vgg_preprocess(x):
"""
Subtracts the mean RGB value, and transposes RGB to BGR.
The mean RGB was computed on the image set used to train the VGG model. Args:
x: Image array (height x width x channels)
Returns:
Image array (height x width x transposed_channels)
"""
x = x - vgg_mean
return x[:, ::-1] # reverse axis rgb->bgr class Vgg16():
"""
The VGG 16 Imagenet model
""" def __init__(self):
self.FILE_PATH = 'http://files.fast.ai/models/'
self.create()
self.get_classes() def get_classes(self):
"""
Downloads the Imagenet classes index file and loads it to self.classes.
The file is downloaded only if it not already in the cache.
"""
fname = 'imagenet_class_index.json'
fpath = get_file(fname, self.FILE_PATH+fname, cache_subdir='models')
with open(fpath) as f:
class_dict = json.load(f)
self.classes = [class_dict[str(i)][1] for i in range(len(class_dict))] def predict(self, imgs, details=False):
"""
Predict the labels of a set of images using the VGG16 model. Args:
imgs (ndarray) : An array of N images (size: N x width x height x channels).
details : ?? Returns:
preds (np.array) : Highest confidence value of the predictions for each image.
idxs (np.ndarray): Class index of the predictions with the max confidence.
classes (list) : Class labels of the predictions with the max confidence.
"""
# predict probability of each class for each image
all_preds = self.model.predict(imgs)
# for each image get the index of the class with max probability
idxs = np.argmax(all_preds, axis=1)
# get the values of the highest probability for each image
preds = [all_preds[i, idxs[i]] for i in range(len(idxs))]
# get the label of the class with the highest probability for each image
classes = [self.classes[idx] for idx in idxs]
return np.array(preds), idxs, classes def ConvBlock(self, layers, filters):
"""
Adds a specified number of ZeroPadding and Covolution layers
to the model, and a MaxPooling layer at the very end. Args:
layers (int): The number of zero padded convolution layers
to be added to the model.
filters (int): The number of convolution filters to be
created for each layer.
"""
model = self.model
for i in range(layers):
model.add(ZeroPadding2D((1, 1)))
# model.add(Convolution2D(filters, 3, 3, activation='relu'))
model.add(Conv2D(filters, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2), strides=(2, 2))) def FCBlock(self):
"""
Adds a fully connected layer of 4096 neurons to the model with a
Dropout of 0.5 Args: None
Returns: None
"""
model = self.model
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5)) def create(self):
"""
Creates the VGG16 network achitecture and loads the pretrained weights. Args: None
Returns: None
"""
model = self.model = Sequential()
model.add(Lambda(vgg_preprocess, input_shape=(3,224,224), output_shape=(3,224,224))) self.ConvBlock(2, 64)
self.ConvBlock(2, 128)
self.ConvBlock(3, 256)
self.ConvBlock(3, 512)
self.ConvBlock(3, 512) model.add(Flatten())
self.FCBlock()
self.FCBlock()
model.add(Dense(1000, activation='softmax')) fname = 'vgg16.h5'
model.load_weights(get_file(fname, self.FILE_PATH+fname, cache_subdir='models')) def get_batches(self, path, gen=image.ImageDataGenerator(), shuffle=True, batch_size=8, class_mode='categorical'):
"""
Takes the path to a directory, and generates batches of augmented/normalized data. Yields batches indefinitely, in an infinite loop. See Keras documentation: https://keras.io/preprocessing/image/
"""
return gen.flow_from_directory(path, target_size=(224,224),
class_mode=class_mode, shuffle=shuffle, batch_size=batch_size) def ft(self, num):
"""
Replace the last layer of the model with a Dense (fully connected) layer of num neurons.
Will also lock the weights of all layers except the new layer so that we only learn
weights for the last layer in subsequent training. Args:
num (int) : Number of neurons in the Dense layer
Returns:
None
"""
model = self.model
model.pop()
for layer in model.layers: layer.trainable=False
model.add(Dense(num, activation='softmax'))
self.compile() def finetune(self, batches): self.ft(batches.num_classes)
classes = list(iter(batches.class_indices)) # get a list of all the class labels # batches.class_indices is a dict with the class name as key and an index as value
# eg. {'cats': 0, 'dogs': 1} # sort the class labels by index according to batches.class_indices and update model.classes
for c in batches.class_indices:
classes[batches.class_indices[c]] = c
self.classes = classes def compile(self, lr=0.001):
"""
Configures the model for training.
See Keras documentation: https://keras.io/models/model/
"""
self.model.compile(optimizer=Adam(lr=lr),
loss='categorical_crossentropy', metrics=['accuracy']) def fit_data(self, trn, labels, val, val_labels, nb_epoch=1, batch_size=64):
"""
Trains the model for a fixed number of epochs (iterations on a dataset).
See Keras documentation: https://keras.io/models/model/
"""
#self.model.fit(trn, labels, nb_epoch=nb_epoch,
# validation_data=(val, val_labels), batch_size=batch_size)
self.model.fit(trn, labels, epochs=nb_epoch,
validation_data=(val, val_labels), batch_size=batch_size) #def fit(self, batches, val_batches, nb_epoch=1):
def fit(self, batches, val_batches, batch_size, nb_epoch=1):
"""
Fits the model on data yielded batch-by-batch by a Python generator.
See Keras documentation: https://keras.io/models/model/
"""
#self.model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=nb_epoch,
# validation_data=val_batches, nb_val_samples=val_batches.nb_sample)
self.model.fit_generator(batches, steps_per_epoch=int(np.ceil(batches.samples/batch_size)), epochs=nb_epoch,
validation_data=val_batches, validation_steps=int(np.ceil(val_batches.samples/batch_size))) def test(self, path, batch_size=8):
"""
Predicts the classes using the trained model on data yielded batch-by-batch. Args:
path (string): Path to the target directory. It should contain one subdirectory
per class.
batch_size (int): The number of images to be considered in each batch. Returns:
test_batches, numpy array(s) of predictions for the test_batches. """
test_batches = self.get_batches(path, shuffle=False, batch_size=batch_size, class_mode=None)
#return test_batches, self.model.predict_generator(test_batches, test_batches.nb_sample)
return test_batches, self.model.predict_generator(test_batches, int(np.ceil(test_batches.samples/batch_size)))

机器学习环境配置系列五之keras2的更多相关文章

  1. 机器学习环境配置系列四之theano

    决定撰写机器学习环境配置的主要原因就是因为theano的配置问题,为了能够用上gpu和cudnn加速,我是费劲了力气,因为theano1.0.0在配置方面出现了重大改变,而网上绝大多数都很老,无法解决 ...

  2. 机器学习环境配置系列三之Anaconda

    1.下载Anaconda文件 进入anaconda的官网 选择对应的系统 选择希望下载的版本(本人下载的是Anaconda 5.3 For Linux Installer Python 3.7 ver ...

  3. 机器学习环境配置系列一之CUDA

    本文配置的环境为redhat6.9+cuda10.0+cudnn7.3.1+anaonda6.7+theano1.0.0+keras2.2.0+jupyter远程,其中cuda的版本为10.0. 第一 ...

  4. 机器学习环境配置系列二之cuDNN

    1.下载cuDNN 前往: NVIDIA cuDNN home page. 进入下载 勾选Nvidia的协议复选框(流氓的选择,不勾选不能下载) 选择与安装的cuda版本一致的cudnn进行下载. 2 ...

  5. 机器学习环境配置系列六之jupyter notebook远程访问

    jupyter运行后只能在本机运行,如果部署在服务器上,大家都希望可以远程录入地址进行访问,这篇文章就是解决这个远程访问的问题.几个基本的命令就可以搞定,然后就可以愉快的玩耍了. 1.安装jupyte ...

  6. java web开发环境配置系列(二)安装tomcat

    在今天,读书有时是件“麻烦”事.它需要你付出时间,付出精力,还要付出一份心境.--仅以<java web开发环境配置系列>来祭奠那逝去的…… 1.下载tomcat压缩包,进入官网http: ...

  7. java web开发环境配置系列(一)安装JDK

    在今天,读书有时是件“麻烦”事.它需要你付出时间,付出精力,还要付出一份心境.--仅以<java web开发环境配置系列>来祭奠那逝去的…… 1.下载JDK文件(http://www.or ...

  8. PHP开发环境配置系列(四)-XAMPP常用信息

    PHP开发环境配置系列(四)-XAMPP常用信息 博客分类: PHP开发环境配置系列 xamppphp 完成了前面三篇后(<PHP开发环境配置系列(一)-Apache无法启动(SSL冲突)> ...

  9. python数据分析&挖掘,机器学习环境配置

    目录 一.什么是数据分析 1.这里引用网上的定义: 2.数据分析发展与组成 3.特点 二.python数据分析环境及各类常用分析包配置 1.处理的数据类型 2.为什么选择python 三.python ...

随机推荐

  1. 布尔&list与条件循环语句与trutle

    布尔值与空值 布尔值: 一个布尔值只有True.False两种值 空值: 是python里一个特殊的值,用None表示.None不能理解为0.因为0是有意义的,而None是一个特殊值. list(列表 ...

  2. mysql高可用解决方案

    浅谈mysql主从复制的高可用解决方案 1.熟悉几个组件(部分摘自网络)1.1.drbd     —— DRBD(Distributed Replicated Block Device),DRBD号称 ...

  3. jsqlparser和calcite和druid功能对比

    需求分析:(用其它方法替代metabase中的某些功能)功能1.通过对sql查询语句的分析,得到所有表名,以及所有表的字段名,字段类型,字段注解信息.功能2.在sql语句执行查询前,校验sql语句是否 ...

  4. maven安装与常用命令

    maven安装: 下载地址http://maven.apache.org/download.cgi 1.安装好Java,配置好Java的环境变量(JDK) 2.下载apache-maven-3.5.2 ...

  5. IDEA 连接Docker 并部署

    安装docker 之前先更新系统: yum update 安装docker: yum install docker 启动docker: systemctl start docker docker 远程 ...

  6. 百度DMA+小度App的蓝牙语音解决方案展示

    前记   跟着百度也有一段时间了,经过一年多的努力,我们也做出了一些基于百度的语音助手的产品方案.下面就给大家秀一下我们做的产品.有类似需求的朋友可以多多交流.我们的合作方式十分灵活,可以卖芯片你自己 ...

  7. Appium Mac系统 自动测试环境搭建

    一.python 环境准备 Mac 自带 Python 环境,一般为 2.7 版本. 1.查看当前系统默认的Python路径 which python ==> /usr/bin/python 2 ...

  8. CAP理论的理解

    CAP理论作为分布式系统的基础理论,它描述的是一个分布式系统在以下三个特性中: 一致性(Consistency) 可用性(Availability) 分区容错性(Partition tolerance ...

  9. 让你彻底明白TCP三次握手,四次挥手

    今天我们来讲一下TCP的三次握手和四次挥手,先来张思维导图.  一.TCP是什么 TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的.可靠的.基于字节流 ...

  10. 《算法笔记》之基础C/C++进阶

    这一次主要讲C++不同于C的地方:类. 1.类的定义 定义一个类,本质上是定义一个数据类型的蓝图.这实际上并没有定义任何数据,但它定义了类的名称意味着什么,也就是说,它定义了类的对象包括了什么,以及可 ...