bzoj 1408 [Noi2002]Robot(欧拉函数)
【题目链接】
http://www.lydsy.com/JudgeOnline/problem.php?id=1408
【题意】
求m的所有约数中,满足可以分解成(奇数个不同素数/偶数个不同素数/其他)的所有的phi之和。
【思路】
ans1表示目前为止有偶数个奇质因子的欧拉函数的前缀和
ans2表示目前为止有奇数个奇质因子的欧拉函数的前缀和。
注意2不是奇质因子,需要去掉。
第三种可以由m-1减去前两种,减1为去掉1,1不是老师。
【代码】
#include<cstdio>
#include<cstring>
using namespace std; const int N = 2e3+;
const int MOD = ; int pow(int a,int p,int mod)
{
int ans=;
while(p) {
if(p&) ans=(ans*a)%mod;
a=(a*a)%mod; p>>=;
}
return ans;
} int ans1,ans2,ans3,n,m,p,e; int main()
{
scanf("%d",&n);
m=;
for(int i=;i<=n;i++)
{
scanf("%d%d",&p,&e);
m=(m*pow(p,e,MOD))%MOD;
if(p==) continue;
int t1=(ans1+ans2*(p-))%MOD;
int t2=(ans2+(ans1+)*(p-))%MOD;
ans1=t1,ans2=t2;
}
ans3=((m--ans1-ans2)%MOD+MOD)%MOD;
printf("%d\n%d\n%d\n",ans1,ans2,ans3);
return ;
}
bzoj 1408 [Noi2002]Robot(欧拉函数)的更多相关文章
- BZOJ 1408: [Noi2002]Robot
1408: [Noi2002]Robot Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 510 Solved: 344[Submit][Status][ ...
- bzoj 2818 GCD 数论 欧拉函数
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...
- bzoj 2190 仪仗队(欧拉函数)
2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2245 Solved: 1413[Submit][Statu ...
- BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec Memory Limit ...
- BZOJ 2190仪仗队【欧拉函数】
问题的唯一难点就是如何表示队长能看到的人数?如果建系,队长所在的点为(0,0)分析几组数据就一目了然了,如果队长能看到的点为(m,n),那么gcd(m,n)=1即m n 互质或者是(0,1),(1,0 ...
- bzoj 2818 Gcd(欧拉函数 | 莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2818 [题意] 问(x,y)为质数的有序点对的数目. [思路一] 定义f[i]表示i之 ...
- Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛
2749: [HAOI2012]外星人 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 568 Solved: 302[Submit][Status][ ...
- BZOJ 2818 GCD(欧拉函数)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37161 题意:gcd(x, y) = 质数, 1 <= x, ...
- BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )
假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...
随机推荐
- [51NOD]BSG白山极客挑战赛
比赛链接:http://www.51nod.com/contest/problemList.html#!contestId=21 /* ━━━━━┒ギリギリ♂ eye! ┓┏┓┏┓┃キリキリ♂ min ...
- Hibernate+JPA (EntityMange讲解)
近年来ORM(Object-Relational Mapping)对象关系映射,即实体对象和数据库表的映射)技术市场人声音鼎沸,异常热闹, Sun在充分吸收现有的优秀ORM框架设计思想的基础上,制定了 ...
- 函数ut_bit_set_nth
/*****************************************************************//** Sets the nth bit of a ulint. ...
- 可视化PK纯代码
简述 其实今天说的内容不仅仅局限于Qt,在很多其它语言或者框架中也适用,那就是 - 用可视化工具or文本编辑器?拖or不拖? 如果有人问我喜欢脱or不脱?我会毫不犹豫地说不脱,因为我比较矜持O(∩_∩ ...
- 真正解决ASP.NET每一个页面首次访问超级慢的问题 (转载)
原文:http://www.afuhao.com/article_articleId-219.shtml 摘要:ASP.NET页面首次打开很慢,但别的页面如果没有访问过,去访问也会慢.你也许认为它是在 ...
- ListView 使用
1. 不使用xml 文件 动态创建 Listview 并且绑定 ArrayList ListView listView = new ListView(this); listView.setAdapte ...
- Android平台调用WebService详解
上篇文章已经对Web Service及其相关知识进行了介绍(Android开发之WebService介绍 ),相信有的朋友已经忍耐不住想试试在Android应用中调用Web Service.本文将通过 ...
- 如果你只会JQuery的插件式开发, 那么你可以进来看看?
对于JQuery的学习,已经有3年多的时间了,直到去年与我的组长一起做项目,看到他写的JS,确实特别漂亮,有时甚至还看不太懂, 我才发现其实我不太会JQuery.所以我有时间就会去看看他写的JS代码, ...
- 苹果官方 Crash文件分析方法 (iOS系统Crash文件分析方法)
对于提交的苹果官方的app,在审核的时候会给我们一些crash文件,对于这些有用的文件,里面是关于我们的bug的一些信息,那么该如何去调试呢 第一步:在任意目录创建一个目录,用来调试crash,我这里 ...
- json转csv
import re # csv格式 # 'k1,k2,k3\nv1,v2,v3\nv4,v5,v6\n' market_list_data = { "data": [ { &quo ...