题目:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

链接:  http://leetcode.com/problems/edit-distance/

题解:

Dynamic Programming动态规划的经典问题,一定要好好继续研究一下。 详解请看下面的reference。 还可以使用滚动数组继续优化空间为O(n)或者O(m)。最近在忙于房子装修,都没有时间刷题和准备面试,下一遍要补上。

下周一onsite BB,裸面,希望有好运气吧!

Time Complexity - O(mn), Space Complexity - O(mn)。

public class Solution {
public int minDistance(String word1, String word2) {
if(word1 == null || word2 == null)
return 0;
int word1Len = word1.length(), word2Len = word2.length();
int[][] dp = new int[word1Len + 1][word2Len + 1]; for(int i = 0; i < word1Len + 1; i++) //word1 as row
dp[i][0] = i; for(int j = 1; j < word2Len + 1; j++) //word2 as column
dp[0][j] = j; for(int i = 1; i < word1Len + 1; i++) {
for(int j = 1; j < word2Len + 1; j++) {
if(word1.charAt(i - 1) == word2.charAt(j - 1))
dp[i][j] = dp[i - 1][j - 1];
else
dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j]));
}
} return dp[word1Len][word2Len];
}
}

Update:

主要使用DP,假设以word1为列,word2为行,初始化的时候设定distance[0][i]以及distance[j][0] - 当对方字符串为空时需要多少步骤。则转移方程为,当前字符相同时,distance[i][j] = distance[i - 1][j - 1], 否则这时insert, replace,delete权重都为1, 方程为1 + 三种改变的最小值, 既Math.min(distance[i - 1][j - 1], Math.min(distance[i - 1][j], distance[i][j - 1]))。 其中distance[i - 1][j - 1]为replace, distance[i - 1][j]是word1删除一个字符, distance[i][j - 1]是word2删除一个字符。

public class Solution {
public int minDistance(String word1, String word2) {
if(word1 == null || word2 == null)
return 0;
int word1Len = word1.length(), word2Len = word2.length();
int[][] distance = new int[word1Len + 1][word2Len + 1]; for(int i = 1; i < word1Len + 1; i++)
distance[i][0] = i; for(int j = 1; j < word2Len + 1; j++)
distance[0][j] = j; for(int i = 1; i < word1Len + 1; i++) {
for(int j = 1; j < word2Len + 1; j++)
if(word1.charAt(i - 1) == word2.charAt(j - 1))
distance[i][j] = distance[i - 1][j - 1];
else
distance[i][j] = 1 + Math.min(distance[i - 1][j - 1], Math.min(distance[i - 1][j], distance[i][j - 1]));
} return distance[word1Len][word2Len];
}
}

二刷

思路仍然不是特别清晰。我们尝试分为以下几个步骤:

  1. 这道题目应该使用dp。
  2. 要解决的是如何定义dp,  如何设置初始化状态,以及转移方程是什么。
  3. 首先我们考虑边界条件,当有一个string为空的时候我们返回0。
  4. 接下来创建一个dp矩阵dist,假如word1的长度为word1Len,word2的长度为word2Len,那么这个矩阵的长度就为[word1Len + 1, word2Len + 1]。
  5. 我们初始化第一行和第一列,dist[i][0] = i, dist[0][j] = j,  都是负责处理其中一个word为空这种情况。
  6. 接下来,我们定义dist[i][j]为 word1(0, i) 到word2(0,j) 这两个单词的min Edit distance。那么我们有以下的公式:
    1. 假如word1.charAt(i) == word2.charAt(j),那么dist[i][j] = 0
    2. 否则dist[i][j] = 1 + min (dist[i - 1][j - 1], min(dist[i - 1][j], dist[i][j - 1]))。
      1. 这里假如使用dist[i - 1][j - 1],意思是replace
      2. 假如使用dist[i - 1][j],那么是word1比word2少1个字符。 对word1来说是add
      3. 假如使用dist[i][j - 1],那么是word2比word1多一个字符。对word1来说是delete
  7. 最后返回结果dist[word1Len][word2Len]
  8. 这里其实也可以简化为滚动数组,达到Space Complexity - O(n)的结果,留给三刷了。

Java:

Time Complexity - O(mn), Space Complexity - O(mn)。

public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) {
return 0;
}
int word1Len = word1.length(), word2Len = word2.length();
int[][] dist = new int[word1Len + 1][word2Len + 1];
for (int i = 1; i <= word1Len; i++) {
dist[i][0] = i;
}
for (int j = 1; j <= word2Len; j++) {
dist[0][j] = j;
} for (int i = 1; i <= word1Len; i++) {
for (int j = 1; j <= word2Len; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dist[i][j] = dist[i - 1][j - 1];
} else {
dist[i][j] = Math.min(dist[i - 1][j - 1], Math.min(dist[i - 1][j], dist[i][j - 1])) + 1;
}
}
} return dist[word1Len][word2Len];
}
}

三刷:

还是dp。当两字符相等时,取左上的值。 否则表示有一个edit distance,我们取左上,上和左三个值里最小的一个,+ 1,然后继续计算。

Java:

public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) return Integer.MAX_VALUE;
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) dp[i][0] = i;
for (int j = 1; j <= n; j++) dp[0][j] = j; for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1];
else dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
}
}
return dp[m][n];
}
}

一维DP:

跟Maximal Square一样,也是使用一个topLeft来代表左上方的元素。

public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) return Integer.MAX_VALUE;
int m = word1.length(), n = word2.length();
if (m == 0) return n;
else if (n == 0) return m; int[] dp = new int[n + 1];
for (int j = 1; j <= n; j++) dp[j] = j;
int topLeft = 0; for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
int tmp = dp[j];
if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[j] = topLeft;
else dp[j] = 1 + Math.min(topLeft, Math.min(dp[j], dp[j - 1]));
topLeft = tmp;
}
dp[0] = i;
topLeft = i;
}
return dp[n];
}
}

Reference:

https://leetcode.com/discuss/10426/my-o-mn-time-and-o-n-space-solution-using-dp-with-explanation

http://www.cnblogs.com/springfor/p/3896167.html

https://leetcode.com/discuss/17997/my-accepted-java-solution

https://leetcode.com/discuss/20945/standard-dp-solution

https://leetcode.com/discuss/5138/good-pdf-on-edit-distance-problem-may-be-helpful

https://leetcode.com/discuss/43398/20ms-detailed-explained-c-solutions-o-n-space

http://web.stanford.edu/class/cs124/lec/med.pdf

https://en.wikipedia.org/wiki/Edit_distance

https://leetcode.com/discuss/64063/ac-python-212-ms-dp-solution-o-mn-time-o-n-space

https://leetcode.com/discuss/43398/20ms-detailed-explained-c-solutions-o-n-space

72. Edit Distance的更多相关文章

  1. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

  2. 刷题72. Edit Distance

    一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...

  3. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  4. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  5. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  6. 72. Edit Distance *HARD*

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  7. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  8. 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. 【一天一道LeetCode】#72. Edit Distance

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given t ...

随机推荐

  1. Use Sandcastle Help File Builder to generate help document

    http://shfb.codeplex.com/ Note: If the the help file contains the text "[Missing <param> ...

  2. 在Java中执行js代码

    在某些特定场景下,我们需要用Java来执行Js代码(如模拟登录时,密码被JS加密了的情况),操作如下: ScriptEngineManager mgr = new ScriptEngineManage ...

  3. C# sogou地图API应用总结

    地图的初始化1.添加引用地图的API文件: <script src="http://api.go2map.com/maps/js/api_v2.5.1.js" type=&q ...

  4. Error NO.2013 Lost connection to Mysql server during query

    系统:[root@hank-yoon ~]# cat /etc/redhat-release CentOS release 6.3 (Final) DB版本:mysql> select @@ve ...

  5. CentOS安装 pure-ftpd

    yum -y install pam-devel cd /usr/local .tar.gz cd pure-ftpd- ./configure --prefix=/usr/local/pure-ft ...

  6. SVN学习

    一.SVN在线安装(Eclipse) 步骤1: 步骤2 其中http://subclipse.tigris.org/update_1.10.x是最新版本的SVN插件的下载站点[subclipse是Ec ...

  7. 模仿开发H5游戏,看你有多色

    开发记录 前言 之前跟着慕课网学习开发H5小游戏开心鱼,勾起我的兴趣. 在写代码的过程中,不怎么会遇到问题.虽然代码是亲手敲出来的,但是由于并没有对游戏的整体思路,所以并不知道开发与优化的过程. 为了 ...

  8. C#的配置文件App.config使用总结 - 转

    http://blog.csdn.net/celte/article/details/9749389 首先,先说明,我使用的app.config 配置文件的格式如下: <?xml version ...

  9. 1226: [SDOI2009]学校食堂Dining - BZOJ

    Description 小F 的学校在城市的一个偏僻角落,所有学生都只好在学校吃饭.学校有一个食堂,虽然简陋,但食堂大厨总能做出让同学们满意的菜肴.当然,不同的人口味也不一定相同,但每个人的口味都可以 ...

  10. java.util.ConcurrentModificationException 解决办法(转)

    今天在项目的中有一个需求,需要在一个Set类型的集合中删除满足条件的对象,这时想当然地想到直接调用Set的remove(Object o)方法将指定的对象删除即可,测试代码:   public cla ...