72. Edit Distance
题目:
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
链接: http://leetcode.com/problems/edit-distance/
题解:
Dynamic Programming动态规划的经典问题,一定要好好继续研究一下。 详解请看下面的reference。 还可以使用滚动数组继续优化空间为O(n)或者O(m)。最近在忙于房子装修,都没有时间刷题和准备面试,下一遍要补上。
下周一onsite BB,裸面,希望有好运气吧!
Time Complexity - O(mn), Space Complexity - O(mn)。
public class Solution {
public int minDistance(String word1, String word2) {
if(word1 == null || word2 == null)
return 0;
int word1Len = word1.length(), word2Len = word2.length();
int[][] dp = new int[word1Len + 1][word2Len + 1]; for(int i = 0; i < word1Len + 1; i++) //word1 as row
dp[i][0] = i; for(int j = 1; j < word2Len + 1; j++) //word2 as column
dp[0][j] = j; for(int i = 1; i < word1Len + 1; i++) {
for(int j = 1; j < word2Len + 1; j++) {
if(word1.charAt(i - 1) == word2.charAt(j - 1))
dp[i][j] = dp[i - 1][j - 1];
else
dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j]));
}
} return dp[word1Len][word2Len];
}
}
Update:
主要使用DP,假设以word1为列,word2为行,初始化的时候设定distance[0][i]以及distance[j][0] - 当对方字符串为空时需要多少步骤。则转移方程为,当前字符相同时,distance[i][j] = distance[i - 1][j - 1], 否则这时insert, replace,delete权重都为1, 方程为1 + 三种改变的最小值, 既Math.min(distance[i - 1][j - 1], Math.min(distance[i - 1][j], distance[i][j - 1]))。 其中distance[i - 1][j - 1]为replace, distance[i - 1][j]是word1删除一个字符, distance[i][j - 1]是word2删除一个字符。
public class Solution {
public int minDistance(String word1, String word2) {
if(word1 == null || word2 == null)
return 0;
int word1Len = word1.length(), word2Len = word2.length();
int[][] distance = new int[word1Len + 1][word2Len + 1]; for(int i = 1; i < word1Len + 1; i++)
distance[i][0] = i; for(int j = 1; j < word2Len + 1; j++)
distance[0][j] = j; for(int i = 1; i < word1Len + 1; i++) {
for(int j = 1; j < word2Len + 1; j++)
if(word1.charAt(i - 1) == word2.charAt(j - 1))
distance[i][j] = distance[i - 1][j - 1];
else
distance[i][j] = 1 + Math.min(distance[i - 1][j - 1], Math.min(distance[i - 1][j], distance[i][j - 1]));
} return distance[word1Len][word2Len];
}
}
二刷
思路仍然不是特别清晰。我们尝试分为以下几个步骤:
- 这道题目应该使用dp。
- 要解决的是如何定义dp, 如何设置初始化状态,以及转移方程是什么。
- 首先我们考虑边界条件,当有一个string为空的时候我们返回0。
- 接下来创建一个dp矩阵dist,假如word1的长度为word1Len,word2的长度为word2Len,那么这个矩阵的长度就为[word1Len + 1, word2Len + 1]。
- 我们初始化第一行和第一列,dist[i][0] = i, dist[0][j] = j, 都是负责处理其中一个word为空这种情况。
- 接下来,我们定义dist[i][j]为 word1(0, i) 到word2(0,j) 这两个单词的min Edit distance。那么我们有以下的公式:
- 假如word1.charAt(i) == word2.charAt(j),那么dist[i][j] = 0
- 否则dist[i][j] = 1 + min (dist[i - 1][j - 1], min(dist[i - 1][j], dist[i][j - 1]))。
- 这里假如使用dist[i - 1][j - 1],意思是replace
- 假如使用dist[i - 1][j],那么是word1比word2少1个字符。 对word1来说是add
- 假如使用dist[i][j - 1],那么是word2比word1多一个字符。对word1来说是delete
- 最后返回结果dist[word1Len][word2Len]
- 这里其实也可以简化为滚动数组,达到Space Complexity - O(n)的结果,留给三刷了。
Java:
Time Complexity - O(mn), Space Complexity - O(mn)。
public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) {
return 0;
}
int word1Len = word1.length(), word2Len = word2.length();
int[][] dist = new int[word1Len + 1][word2Len + 1];
for (int i = 1; i <= word1Len; i++) {
dist[i][0] = i;
}
for (int j = 1; j <= word2Len; j++) {
dist[0][j] = j;
} for (int i = 1; i <= word1Len; i++) {
for (int j = 1; j <= word2Len; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dist[i][j] = dist[i - 1][j - 1];
} else {
dist[i][j] = Math.min(dist[i - 1][j - 1], Math.min(dist[i - 1][j], dist[i][j - 1])) + 1;
}
}
} return dist[word1Len][word2Len];
}
}
三刷:
还是dp。当两字符相等时,取左上的值。 否则表示有一个edit distance,我们取左上,上和左三个值里最小的一个,+ 1,然后继续计算。
Java:
public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) return Integer.MAX_VALUE;
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) dp[i][0] = i;
for (int j = 1; j <= n; j++) dp[0][j] = j; for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1];
else dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
}
}
return dp[m][n];
}
}
一维DP:
跟Maximal Square一样,也是使用一个topLeft来代表左上方的元素。
public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) return Integer.MAX_VALUE;
int m = word1.length(), n = word2.length();
if (m == 0) return n;
else if (n == 0) return m; int[] dp = new int[n + 1];
for (int j = 1; j <= n; j++) dp[j] = j;
int topLeft = 0; for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
int tmp = dp[j];
if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[j] = topLeft;
else dp[j] = 1 + Math.min(topLeft, Math.min(dp[j], dp[j - 1]));
topLeft = tmp;
}
dp[0] = i;
topLeft = i;
}
return dp[n];
}
}
Reference:
https://leetcode.com/discuss/10426/my-o-mn-time-and-o-n-space-solution-using-dp-with-explanation
http://www.cnblogs.com/springfor/p/3896167.html
https://leetcode.com/discuss/17997/my-accepted-java-solution
https://leetcode.com/discuss/20945/standard-dp-solution
https://leetcode.com/discuss/5138/good-pdf-on-edit-distance-problem-may-be-helpful
https://leetcode.com/discuss/43398/20ms-detailed-explained-c-solutions-o-n-space
http://web.stanford.edu/class/cs124/lec/med.pdf
https://en.wikipedia.org/wiki/Edit_distance
https://leetcode.com/discuss/64063/ac-python-212-ms-dp-solution-o-mn-time-o-n-space
https://leetcode.com/discuss/43398/20ms-detailed-explained-c-solutions-o-n-space
72. Edit Distance的更多相关文章
- 【Leetcode】72 Edit Distance
72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...
- 刷题72. Edit Distance
一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...
- [LeetCode] 72. Edit Distance 编辑距离
Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...
- leetCode 72.Edit Distance (编辑距离) 解题思路和方法
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert ...
- [LeetCode] 72. Edit Distance(最短编辑距离)
传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...
- 72. Edit Distance *HARD*
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- LeetCode - 72. Edit Distance
最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...
- 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...
- 【一天一道LeetCode】#72. Edit Distance
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given t ...
随机推荐
- python 内置模块之hashlib、hmac、uuid
一.hashlib md5和sha算法通过消息摘要算法生成定长的消息摘要,消息摘要算法是不可逆的.但同一段消息通过摘要算法后得到的值是一样的,可一通过比对消息摘要验证数据的完整性. sha算法比MD5 ...
- Python-Day5 常用模块学习
一.模块介绍 通俗点说,就是把常用的一些功能单独放置到一个.py文件中,方便其他文件来调用,这样的一个文件可以称为一个模块. 模块分为三种: 自定义模块 内置标准模块(又称标准库) 开源模块 二.导入 ...
- WPF 实现QQ抖动
//wpf中实现类似于qq的抖动窗效果 //前段页面 <Window x:Class="WpfApplication4.MainWindow" xmlns="htt ...
- STM32 ucosii 串口接收数据 遇到的问题及解决思路
写一个程序,用到了ucos ii ,串口在中断中接收数据(一包数据 8个字节 包含: 1byte包头 5byte数据 1byte校验和 1byte 包尾 ) ,数据由上位机每隔500ms发送一次,在串 ...
- PAT乙级真题1008. 数组元素循环右移问题 (20)
原题: 1008. 数组元素循环右移问题 (20) 时间限制400 ms内存限制65536 kB 一个数组A中存有N(N>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(M&g ...
- WPF-控件-将ListBox条目水平排列
<Grid Margin="6"> <ListBox> <!--ItemsPanel--> <ListBox.ItemsPanel> ...
- AvalonDock 2.0+Caliburn.Micro+MahApps.Metro实现Metro风格插件式系统(菜单篇)
这章主要说插件的菜单,可以说菜单是最核心的部分,前面我们已经实现了Document添加,现在主要就是生成具有层级关系的菜单,以及把菜单跟我们自定义的Document关联起来,也就是MenuPart-& ...
- [algorithm]求最长公共子序列问题
最直白方法:时间复杂度是O(n3), 空间复杂度是常数 reference:http://blog.csdn.net/monkeyandy/article/details/7957263 /** ** ...
- PV操作,
P操作是先做减一操作,然后判读是否大于等于0. V操作是先做加一操作,然后判断是否大于0
- 【EntityFramwork--处理数据并发问题】
EntityFramwork--处理数据并发问题时支持乐观并发,即假定最佳场景(这里是指数据在更新过程中没有发生变化) 具体看<Beginning ASP.NET 4.5 Databases&g ...