题目链接:

GTW likes function

Time Limit: 4000/2000 MS (Java/Others)   

 Memory Limit: 131072/131072 K (Java/Others)

Problem Description
 
Now you are given two definitions as follows.

f(x)=∑xk=0(−1)k22x−2kCk2x−k+1,f0(x)=f(x),fn(x)=f(fn−1(x))(n≥1)

Note that φ(n) means Euler’s totient function.(φ(n)is an arithmetic function that counts the positive integers less than or equal to n that are relatively prime to n.)

For each test case, GTW has two positive integers — n and x, and he wants to know the value of the function φ(fn(x)).

 
Input
 
There is more than one case in the input file. The number of test cases is no more than 100. Process to the end of the file.

Each line of the input file indicates a test case, containing two integers, n and x, whose meanings are given above. (1≤n,x≤1012)

 
Output
 
In each line of the output file, there should be exactly one number, indicating the value of the function φ(fn(x)) of the test case respectively.
 
Sample Input
 
1 1
2 1
3 2
 
Sample Output
 
2
2
2
 
题意:
 
给这么一个函数,问euler(fn(x))为多少;
 
思路:
 
发现f0(x)=x+1;fn(x)=f(fn-1(x))=f0(fn-1(x))=fn-1(x)+1=f0(x)+n=x+n+1;
再就是O(sqrt(n))复杂度找到euler(x+n+1);
 
AC代码:
 
//#include <bits/stdc++.h>

#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
const LL mod=1e9+;
const double PI=acos(-1.0);
const int inf=0x3f3f3f3f; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} LL n,x; int main()
{
while(cin>>n>>x)
{
LL sum=n+x+,ans;
ans=sum;
for(LL i=;i*i<=n+x+;i++)
{
if(sum%i==)
{
ans=ans/i*(i-);
while(sum%i==)sum/=i;
}
}
if(sum>)ans=ans/sum*(sum-);
cout<<ans<<"\n";
} return ;
}

hdu-5597 GTW likes function(欧拉函数+找规律)的更多相关文章

  1. HDU 5597 GTW likes function 欧拉函数

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5597 题意: http://bestcoder.hdu.edu.cn/contests/contes ...

  2. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  3. hdu 2824 The Euler function(欧拉函数)

    题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质 ...

  4. HDU 5597 GTW likes function 打表

    GTW likes function 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5596 Description Now you are give ...

  5. hdu 2824 The Euler function 欧拉函数打表

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. HDU - 2824 The Euler function 欧拉函数筛 模板

    HDU - 2824 题意: 求[a,b]间的欧拉函数和.这道题卡内存,只能开一个数组. 思路: ϕ(n) = n * (p-1)/p * ... 可利用线性筛法求出所有ϕ(n) . #include ...

  7. 【poj 2478】Farey Sequence(数论--欧拉函数 找规律求前缀和)

    题意:定义 Fn 序列表示一串 <1 的分数,分数为最简分数,且分母 ≤n .问该序列的个数.(2≤N≤10^6) 解法:先暴力找规律(代码见屏蔽处),发现 Fn 序列的个数就是 Φ(1)~Φ( ...

  8. HDU 6237.A Simple Stone Game-欧拉函数找素因子 (2017中国大学生程序设计竞赛-哈尔滨站-重现赛)

    A Simple Stone Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Ot ...

  9. HDU 6322.Problem D. Euler Function -欧拉函数水题(假的数论题 ̄▽ ̄) (2018 Multi-University Training Contest 3 1004)

    6322.Problem D. Euler Function 题意就是找欧拉函数为合数的第n个数是什么. 欧拉函数从1到50打个表,发现规律,然后勇敢的水一下就过了. 官方题解: 代码: //1004 ...

随机推荐

  1. state与status的区别

    status 指人时暗指相对的地位,指物时相当于 situation.situation 较狭义地指由环境综合决定的特定时间上的状态或情形. state 人或物存在或所处的状态,和 condition ...

  2. pic/at89c2051 programmer

    http://dangerousprototypes.com/forum/viewtopic.php?t=170 It looks like the PICKIT2 uses a small boos ...

  3. acdream 1409 Musical 状压DP

    链接:http://acdream.info/problem? pid=1409 题意:整个国家有n座城市,每座城市有三种粉丝. 第一种一周看一场音乐剧,挑选的音乐剧是已经在周围城市播放上演过的次数最 ...

  4. LNMP环境下压力测试时的主要调试参数

    LNMP环境下压力测试时的主要调试参数: 进行HTTP的压力测试时,很多时候会遇到很小的并发数,服务器就会出现不响应,或者连接超时,一般导致的原因有如下几点: 一.Nginx主要调试参数 主模块参数: ...

  5. VS2013 安装phonegap

    https://www.microsoft.com/en-us/download/details.aspx?id=40783

  6. 如何用C#语言构造蜘蛛程序

    "蜘蛛"(Spider)是Internet上一种很有用的程序,搜索引擎利用蜘蛛程序将Web页面收集到数据库,企业利用蜘蛛程序监视竞争对手的网站并跟踪变动,个人用户用蜘蛛程序下载We ...

  7. HTML 转义符

    特殊字符 字符 十进制 转义字符 “ " " & & & < < < > > > 不断开空格(non-breaking ...

  8. Linux下判断cpu物理个数、几核

    自己服务器的输出 1. 查看物理CPU的个数   #cat /proc/cpuinfo |grep "physical id"|sort |uniq|wc -l    1 2. 查 ...

  9. Mysql子查询IN中使用LIMIT

    学习下Mysql子查询IN中使用LIMIT的方法. 这两天项目里出了一个问题,mysql LIMIT使用后报错. 需求是这样的,我有3张表,infor信息表,mconfig物料配置表,maaply物料 ...

  10. 基于Ascensor.js全屏切换页面插件

    今天给大家分享一款基于Ascensor.js全屏切换页面插件,这款实例 适用浏览器:IE8.360.FireFox.Chrome.Safari.Opera.傲游.搜狗.世界之窗.效果图如下: 在线预览 ...