[经典算法] 排列组合-N元素集合的所有子集(二)
题目说明:
给定一组数字或符号,按照字典序产生所有可能的集合(包括空集合),例如给定1 2 3,则可能的集合为:{}、{1}、{1,2}、{1,2,3}、{1,3}、{2}、{2,3}、{3}。
题目解析:
如果要产生字典顺序,例如若有4个元素,则:
{} => {1} => {1,2} => {1,2,3} => {1,2,3,4} =>
{1,2,4} =>
{1,3} => {1,3,4} =>
{1,4} =>
{2} => {2,3} => {2,3,4} =>
{2,4} =>
{3} => {3,4} =>
{4}
简单的说,如果有n个元素要产生可能的集合,当依序产生集合时,如果最后一个元素是n,而倒数第二个元素是m的话,
例如:
{a b c d e n}
则下一个集合就是{a b c d e+1},再依序加入后续的元素。
例如有四个元素,而当产生{1 2 3 4}集合时,则下一个集合就是{1 2 3+1},也就是{1 2 4},由于最后一个元素还是4,所以下一个集合就是{1 2+1},也就是{1 3},接下来再加入后续元素4,也就是{1 3 4},由于又遇到元素4,所以下一个集合是{1 3+1},也就是{1 4}。
程序代码:
#include <gtest/gtest.h>
using namespace std; void ShowResult(int State[], int nSize)
{
cout << "{";
for (int i=0; i<nSize; ++i)
{
cout << State[i] << " ";
}
cout << "}\n";
} // 产生字典序的子集
int GenerateOrderSubset(int nSize)
{
if (nSize==0)
{
cout << "{}" << endl;
return 1;
} int nCount = 0;
int nPos = -1;
int *State = new int[nSize];
memset(State, 0, sizeof(int)*nSize); do
{
nCount++;
ShowResult(State, nPos+1);
if (nPos==-1)
{
State[++nPos] = 1;
continue;
} if (State[nPos] < nSize) // 递增集合个数
{
State[nPos+1] = State[nPos] + 1;
nPos++;
}
else if(nPos > 0) // 如果不是第一个位置
{
nPos—; // 倒退
State[nPos]++;// 下一个集合尾数
}
else
{
break; // 已倒退至第一个位置
}
}
while(true); delete[] State; return nCount;
} TEST(Algo, tCombination)
{
// 有字典序 // 0个数子集合数 =〉2^0 = 1
ASSERT_EQ(GenerateOrderSubset(0), 1); // 3个数子集合数 =〉2^3 = 8
ASSERT_EQ(GenerateOrderSubset(3), 8); // 5个数子集合数 =〉2^5 = 32
ASSERT_EQ(GenerateOrderSubset(5), 32); // 10个数子集合数 =〉2^10 = 1024
ASSERT_EQ(GenerateOrderSubset(10), 1024);
}
参考引用:
http://www.cnblogs.com/Quincy/p/4838051.html
看书、学习、写代码
[经典算法] 排列组合-N元素集合的所有子集(二)的更多相关文章
- [经典算法] 排列组合-N元素集合的所有子集(一)
题目说明: 给定一组数字或符号,产生所有可能的集合(包括空集合),例如给定1 2 3,则可能的集合为:{}.{1}.{1,2}.{1,2,3}.{1,3}.{2}.{2,3}.{3}. 题目解析: 如 ...
- [经典算法] 排列组合-N元素集合的M元素子集
题目说明: 假设有个集合拥有n个元素,任意的从集合中取出m个元素,则这m个元素所形成的可能子集有那些? 题目解析: 假设有5个元素的集合,取出3个元素的可能子集如下: {1 2 3}.{1 2 4 } ...
- python算法-排列组合
排列组合 一.递归 1.自己调用自己 2.找到一个退出的条件 二.全排列:针对给定的一组数据,给出包含所有数据的排列的组合 1:1 1,2:[[1,2],[2,1]] 1,2,3:[[1,2,3],[ ...
- HDU5145:5145 ( NPY and girls ) (莫队算法+排列组合+逆元)
传送门 题意 给出n个数,m次访问,每次询问[L,R]的数有多少种排列 分析 \(n,m<=30000\),我们采用莫队算法,关键在于区间如何\(O(1)\)转移,由排列组合知识得到,如果加入一 ...
- 递归算法之排列组合-求一个集合S的m个元素的组合和所有可能的组合情况
求一个集合S的m个元素组合的所有情况,并打印出来,非常适合采用递归的思路进行求解.因为集合的公式,本身就是递归推导的: C(n,m) = C(n-1,m-1) + C(n-1,m). 根据该公式,每次 ...
- 排列组合或容斥原理 SPOJ - AMR11H
题目链接: https://vjudge.net/contest/237052#problem/H 这里给你一串数字,让你计算同时拥有这串数字最大值和最小值的子集(连续)和子序列(可以不连续)的数量, ...
- PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?
首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...
- N个数组中所有元素的排列组合(笛卡尔积)算法
(1)N个数组对象中所有元素排列组合算法 private List<List<Object>> combineAlg(List<Object[]> nArray) ...
- 排列组合算法(PHP)
用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...
随机推荐
- java getEnv不区分大小写 getProperty区分大小写
System.out.println(System.getenv("JAVA_HOME")); System.out.println(System.getenv("Pat ...
- 用PyInstaller把Python代码打包成单个独立的exe可执行文件
之前就想要把自己的BlogsToWordpress打开成exe了.一直没去弄. 又看到有人提到python打开成exe的问题. 所以打算现在就去试试. 注:此处之所有选用BlogsToWordpres ...
- Intellij IDEA 14.x 中的Facets和Artifacts的区别
Facets和Artifacts的区别: Facets 表示这个module有什么特征,比如 Web,Spring和Hibernate等: Artifact 是maven中的一个概念,表示某个modu ...
- cf754 A. Lesha and array splitting
应该是做麻烦了,一开始还没A(幸好上一次比赛水惨了) #include<bits/stdc++.h> #define lowbit(x) x&(-x) #define LL lon ...
- SNMP MIB中的含read-create节点的表的实现
做过snmp/mib开发的知道,常见的节点类型一般只有no-accessible,read-only,read-write三种访问类型.snmp V2中引入了一种新的访问类型:read-create. ...
- android 工具类之图片加工
/** * 图片加工厂 * * @author way * */ public class ImageUtil { /** * 通过路径获取输入流 * * @param path * 路径 * @re ...
- PHP安装环境,服务器不支持curl_exec的解决办法
转自:http://jingyan.baidu.com/article/00a07f38909c6b82d028dc83.html windows下开启方法: 拷贝PHP目录中的libeay32.dl ...
- Painter 12安装教程
1 首先打开激活器 2 开始安装,点击我有序列码,把激活器中的序列码粘贴到安装文件中. 3 安装完成后,点击activate option选项,点击电话联系: 激活成功
- 负载均衡LVS集群详解
一.LB--负载均衡 在负载均衡集群中需要一个分发器,我们将其称之为Director,它位于多台服务器的上面的中间层,根据内部锁定义的规则或调度方式从下面的服务器群中选择一个以此来进行响应请求,而其 ...
- jQuery Mobile 手动显示ajax加载器,提示加载中...
在使用jQuery Mobile开发时,有时候我们需要在请求ajax期间,显示加载提示框(例如:一个旋转图片+一个提示:加载中...).这个时候,我们可以手动显示jQuery Mobile的加载器,大 ...