看完这篇文章写的小程序,Floyd最短路径算法,求从一个点到另一个点的最短距离,中间可以经过其他任意个点。三个for循环,从i到j依次经过k的最短距离,最外层for循环是经过点K,内部两个循环是从i(0)到j(0,1,2,3)经过k(0)的最短距离,从i(1)到j(0,1,2,3)经过k(0)的最短距离,······,从i(3)到j(0,1,2,3)经过k(0)的最短距离;在经过k(0)的基础上再经过k(2),从i(0)到j(0,1,2,3)经过k(1)的最短距离,从i(1)到j(0,1,2,3)经过k(1)的最短距离,········

程序是根据上面那篇文章写的

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Threading.Tasks;

 namespace Floyd最短路径算法
 {
     class Program
     {
         static void Main(string[] args)
         {
             , ] {  { , , ,  },
                                         { , , ,  },
                                         { , , ,  },
                                         { , , ,  } };

             , ] { { , , ,  },
                                         { , , ,  },
                                         { , , ,  },
                                         { , , ,  } };

             ; i < ; i++)
             {
                 ; j < ; j++)
                 {
                     Console.Write(e1[i, j] + "       ");
                 }
                 Console.WriteLine();
             }
             ; k < ; k++)  //分别经过四个地点
             {
                 ; i < ; i++) //i是第一个地点
                 {
                     ; j < ; j++)  //j是第二个地点
                     {
                         //从i到k,k到j 小于i到j
                         if (e1[i, k] + e1[k, j] < e1[i, j])
                         {
                             e1[i, j] = e1[i, k] + e1[k, j];

                             Console.WriteLine(,j+,k+,e[i,j],e1[i,j]);
                         }
                     }
                 }
             }
             Console.WriteLine("----------------------------------");
             ; i < ; i++)
             {
                 ; j < ; j++)
                 {
                     Console.Write(e1[i, j] + "    ");
                 }
                 Console.WriteLine();
             }
             Console.ReadKey();
         }
     }
 }

Floyd最短路径算法的更多相关文章

  1. Algorithm --> Dijkstra和Floyd最短路径算法

    Dijkstra算法 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必 ...

  2. Floyd最短路径算法(来自微信公众号“算法爱好者”改编)

    暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有4个城市8条公路,公路上的数字表 ...

  3. DS实验题 Floyd最短路径 & Prim最小生成树

    题目: 提示: Floyd最短路径算法实现(未测试): // // main.cpp // Alg_Floyd_playgame // // Created by wasdns on 16/11/19 ...

  4. 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)

    几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd ...

  5. 最短路径算法——Dijkstra算法与Floyd算法

    转自:https://www.cnblogs.com/smile233/p/8303673.html 最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2  ...

  6. 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)

    一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...

  7. 几个最短路径算法Floyd、Dijkstra、Bellman-Ford、SPFA的比较

        几大最短路径算法比较 转自:http://blog.csdn.net/v_july_v/article/details/6181485 几个最短路径算法的比较: Floyd        求多 ...

  8. (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍

    这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...

  9. 几个最短路径算法Floyd、Dijkstra、Bellman-Ford、SPFA的比较(转)

    几大最短路径算法比较 几个最短路径算法的比较:Floyd        求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floy ...

随机推荐

  1. Java读取Properties配置文件

    1.Properties类与Properties配置文件 Properties类继承自Hashtable类并且实现了Map接口,使用键值对的形式来保存属性集.不过Properties的键和值都是字符串 ...

  2. [C++基础]随机数,随机种子数

    #include <stdlib.h> #include <iostream> #include <ctime> using namespace std; void ...

  3. android activity 跳转传值问题研究

    intent = new Intent(); intent.setClass(LoginActivity.this, RegActivity.class); startActivity(intent) ...

  4. NBUT 1225 NEW RDSP MODE I

    找出循环周期即可了 #include<bits/stdc++.h> using namespace std; int N,M,X; int time(int x,int y,int z) ...

  5. 云服务器 ECS Linux IO 占用高问题排查方法

    https://help.aliyun.com/knowledge_detail/41224.html?spm=5176.7841174.2.19.uqC1as#使用 iostat 从系统纬度查看磁盘 ...

  6. ci框架学习中注意的事项

    视图: 加载视图:$this->load->view('name'); 一次可以加载多个视图,如: public function index() { $data['page_title' ...

  7. 代码片段 - Golang 实现集合操作

    ------------------------------------------------------------ 如果用于多例程,可以使用下面的版本: -------------------- ...

  8. 【技术文档】XuebaOnline配环境时遇到的问题和解决办法

    在Ubuntu下装XuebaOnline可能遇到的问题和解决办法 自动安装Python3.0以上版本 编译命令采用python3 manage.py runserver,所以在linux系统下需要安装 ...

  9. java对象创建过程

    1.jvm找到class文件路径. 2.jvm载入class文件,静态初始化,创建一个class对象. 3.为即将创建的对象分配内存空间. 4.对分配的空间进行清零,例如:int清除为0,boolea ...

  10. 1.4.2 solr字段类型--(1.4.2.5)使用枚举字段

    1.4.2 solr字段类型 (1.4.2.1) 字段类型定义和字段类型属性. (1.4.2.2) solr附带的字段类型 (1.4.2.3) 使用货币和汇率 (1.4.2.4) 使用Dates(日期 ...