输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数
题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数。例如输入12,从1到12这些整数中包含1 的数字有1,10,11和12,1一共出现了5次。
分析:首先最先想到的是遍历从1到n的每个数,判断每个数中包含1的个数,再相加。 时间复杂度:如果输入数字为n,n有O(logn)位,我们需要判断每个数字的每一位是不是为1,所以时间复杂度为O(n*logn)。如果输入数字很大的时候,就需要大量的计算,效率不高。
接下来观察规律:
从个位到最高位,我们判断每一位1出现的次数。比如
对于数23 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 2 22 23
个位为1的数为01,11,21。次数为3
十位为1的次数,10,11,12.13 14 15 16 17 18 19 次数为10次
总结规律得到:
在个位出现1的个数=n/10+(个位=0,0;个位>1,1;个位=1,低0位+1);
十位位出现1的个数=n/100*10+(十位=0,0;十位>1,10,;十位=1,低一位+1);
百位出现1的个数=n/1000*100+(百位=0,0;百位>1,100;百位=1,低两位+1);
手工求解:
125
个位=12+1
十位=10+10
百位=0+26
59个1
算法描述:
(1)求出所给正整数a的位数,假设为N,num保存1的个数
(2)另p=a,num+=p/10i*10i-1;(i=1...N-1);
(3)令p=a/10i-1;p=p%10,if(p==1) num+=a%10i-1+1;if(p>1) num+=10i-1;(i=1....N)
(4)printf(num);
因为算法复杂度只和数字的位数有关,位数为logn位,所以总的时间复杂度为O(logn).
参考:http://www.cnblogs.com/GoAhead/archive/2012/05/28/2521415.html
输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数的更多相关文章
- c# 用户输入一个字符串,求字符串的长度
C# 用户输入一个字符串,求字符串的长度使用字符串的length: class Program { static void Main(string[] args) { Console.WriteLi ...
- 输入一个数组,求最小的K个数
被这道题困了好久,看了剑指Offer才知道OJ上的要求有点迷惑性. 题目: 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 一 ...
- 求1~n整数中1出现的次数(《剑指offer》面试题43)
题意: 给定一个整数n,求1~n这n个整数中十进制表示中1出现的次数. 思路: 方法1:最直观的是,对于1~n中的每个整数,分别判断n中的1的个数,具体见<剑指offer>.这种方法的时间 ...
- 剑指Offer:面试题32——从1到n整数中1出现的次数(java实现)
问题描述: 输入一个整数n,求1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11,12,1一共出现了5次. 思路:(不考虑时间效率的解法,肯定不 ...
- (剑指Offer)面试题32:从1到n整数中1出现的次数
题目: 输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11和12,一共出现了5次. 思路: 1.累加法 累加1到n中每个整数 ...
- 【面试题032】从1到n整数中1出现的次数
[面试题032]从1到n整数中1出现的次数 题目: 输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数. 例如输入12,从1到12这些整数中包含1的数字有1,10,11和1 ...
- 从1到n整数中1出现的次数
题目如题 如 5 中1出现的次数 为1 12中1出现的次数为5 public class NumberOf1Between1AndN { /* *输入一个整数n,求从1到n这N个十进制表示中1出现的次 ...
- 面试题32.从1到n整数中1出现的次数
题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如输入12,从 1到12这些整数中包含1的数字中1,10,11和12,1一共出现了5次 本题可以直接变量1到n的n个数然后分别计 ...
- Python解决 从1到n整数中1出现的次数
最近在看<剑指Offer>,面试题32的题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1.10.11和12,1一共出 ...
随机推荐
- ExtJS4.2学习(11)可拖放的表格(转)
鸣谢:http://www.shuyangyang.com.cn/jishuliangongfang/qianduanjishu/2013-11-18/180.html --------------- ...
- ExtJS4.2学习(四)Grid表格中文排序问题(转)
鸣谢:http://www.shuyangyang.com.cn/jishuliangongfang/qianduanjishu/2013-11-07/173.html --------------- ...
- Samza文档翻译 : Concepts
此页介绍啊Samza的一些高层级概念. Streams Samza处理Streams(流).流由同一类型的不可变的消息组成.例如,一个流可以是对一个网站的所有点击,或者对一个数据库表的所有更新,或者一 ...
- django 的mysql数据配置
原地址:http://blog.csdn.net/gamesofsailing/article/details/21465327 在成功安装python-mysql后,开始配置django的mysql ...
- hdu 1847 Good Luck in CET-4 Everybody! 博弈论
方法一:找规律,很容易知道 #include<stdio.h> int main(){ int n; while(scanf("%d",&n)!=EOF){ p ...
- gcc: error trying to exec 'cc1plus': execvp: 没有该文件或目录 解决方案
一般来说,装完linux系统(ubuntu)后,要自己安装java或者c/c++的环境. 这个提示就是说你的系统缺少 g++ 包. 请执行:sudo apt-get install g++ (在ub ...
- 【转】win7如何设置共享目录,并且访问不需要输入用户名和密码。
1.打开guest帐号,guest帐号默认情况下是不启用的 进入控制面板->用户帐户->管理其他帐户->激活Gust用户 2,右击共享目录,属性->共享->共享-> ...
- Java中List的排序
第一种方法,就是list中对象实现Comparable接口,代码如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2 ...
- Qt之四种等待提示框
http://blog.csdn.net/u011012932/article/details/51029602http://blog.csdn.net/u011012932/article/deta ...
- 转:数据包经由路由转发时源、目的IP地址及MAC地址变化情况
数据包经由路由转发时源.目的IP地址及MAC地址变化情况. IP数据包经由路由转发的时候源ip,目的ip,源MAC,目的mac是否发生改变,如何改变? A—–(B1-B2)—–(C1-C2)—— ...