Description

给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求: 1、 在不扩容的情况下,1到N的最大流; 2、 将1到N的最大流增加K所需的最小扩容费用。

Input

输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。

Output

输出文件一行包含两个整数,分别表示问题1和问题2的答案。

Sample Input

5 8 2
1 2 5 8
2 5 9 9
5 1 6 2
5 1 1 8
1 2 8 7
2 5 4 9
1 2 1 1
1 4 2 1

Sample Output

13 19
30%的数据中,N<=100
100%的数据中,N<=1000,M<=5000,K<=10
 
第一问最大流
第二问
建立超级源和超级汇,超级源向1连边,容量为K,n向超级汇连边,容量同上。原来的每条边再建立一条,容量为inf,费用为W,在原图上增广,跑最小费用最大流
但是!!!新边一定要在求完第一问之后再建。。。
代码量略大。。。不过我都上套板子。。。
 #include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
const int N=,inf=;
struct ee{int to,next,f,w;}e[N*];
int S,T,cnt=,n,k,ans1,ans2,timer,m,u[N],v[N],w[N],c[N],mid;
int head[N],dis[N],pre[N],q[N];
bool inq[N],flag=;
void ins(int u,int v,int f,int w){
e[++cnt].to=v,e[cnt].next=head[u],e[cnt].f=f,e[cnt].w=w,head[u]=cnt;
e[++cnt].to=u,e[cnt].next=head[v],e[cnt].f=,e[cnt].w=-w,head[v]=cnt;
}
bool spfa(){
for (int i=;i<=T;i++) dis[i]=inf;
int h=,t=;
q[t]=S;dis[S]=;inq[S]=;
while (h!=t){
int now=q[++h];if(h==) h=;
for (int i=head[now];i;i=e[i].next){
int v=e[i].to;
if (dis[v]>dis[now]+e[i].w&&e[i].f){
dis[v]=dis[now]+e[i].w;
pre[v]=i;
if (!inq[v]){
q[++t]=v;if (t==) t=;
inq[v]=;
}
}
}
inq[now]=;
}
if (dis[T]==inf) return ;
return ;
} void updata(){
int tmp=T,flow=inf;
while (tmp!=S){
int l=pre[tmp],v=e[l].to;
flow=min(flow,e[l].f);
tmp=e[l^].to;
}
tmp=T;
while (tmp!=S){
int l=pre[tmp],v=e[l].to;
e[l].f-=flow;e[l^].f+=flow;
tmp=e[l^].to;
}
mid+=flow;
if(mid>=k) flag=;
ans2+=dis[T]*flow;
} bool bfs(){
for (int i=;i<=T;i++) dis[i]=inf;
int h=,t=,now;
q[]=;dis[]=;
while(h!=t){
now=q[++h];
for (int i=head[now];i;i=e[i].next){
int v=e[i].to;
if (e[i].f&&dis[now]+<dis[v]){
dis[v]=dis[now]+;
if (v==n)return ;
q[++t]=v;
}
}
}
if (dis[n]==inf) return ; return ;
} int dinic(int now,int f){
if (now==n) return f;
int rest=f;
for (int i=head[now];i;i=e[i].next){
int v=e[i].to;
if (e[i].f&&dis[v]==dis[now]+&&rest){
int t=dinic(v,min(rest,e[i].f));
if (!t) dis[v]=;
e[i].f-=t;
e[i^].f+=t;
rest-=t;
//if(t) printf("%d %d %d\n",now,v,e[i].f);
}
}
return f-rest;
} int main(){
scanf("%d%d%d",&n,&m,&k);
S=,T=n+;
for (int i=;i<=m;i++){
scanf("%d%d%d%d",&u[i],&v[i],&c[i],&w[i]);
ins(u[i],v[i],c[i],);
}
ins(S,,k,);ins(n,T,k,);
while(bfs())
ans1+=dinic(,inf);
for (int i=;i<=m;i++)ins(u[i],v[i],inf,w[i]);
while(flag&&spfa())
updata();
printf("%d %d",ans1,ans2);
}

【BZOJ 1834】 [ZJOI2010]network 网络扩容的更多相关文章

  1. BZOJ 1834: [ZJOI2010]network 网络扩容(最大流+最小费用最大流)

    第一问直接跑最大流.然后将所有边再加一次,费用为扩容费用,容量为k,再从一个超级源点连一条容量为k,费用为0的边到原源点,从原汇点连一条同样的边到超级汇点,然  后跑最小费用最大流就OK了. ---- ...

  2. bzoj 1834: [ZJOI2010]network 网络扩容 -- 最大流+费用流

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Description 给定一张有向图,每条边都有一个容量C和一 ...

  3. bzoj 1834 [ZJOI2010]network 网络扩容(MCMF)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1834 [题意] 给定一个有向图,每条边有容量C,扩容费用W,问最大流和使容量增加K的最 ...

  4. BZOJ 1834 [ZJOI2010]network 网络扩容(费用流)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1834 [题目大意] 给定一张有向图,每条边都有一个容量C和一个扩容费用W. 这里扩容费 ...

  5. bzoj 1834: [ZJOI2010]network 网络扩容

    #include<cstdio> #include<iostream> #include<cstring> #define M 100000 #define inf ...

  6. bzoj 1834: [ZJOI2010]network 网络扩容【最大流+最小费用最大流】

    第一问直接跑最大流即可.建图的时候按照费用流建,费用为0. 对于第二问,在第一问dinic剩下的残量网络上建图,对原图的每条边(i,j),建(i,j,inf,cij),表示可以用c的花费增广这条路.然 ...

  7. BZOJ 1834: [ZJOI2010]network 网络扩容 最小费用流_最大流_残量网络

    对于第一问,跑一遍最大流即可. 对于第二问,在残量网络上的两点间建立边 <u,v>,容量为无限大,费用为扩充费用. 跑一遍最小费用流即可. Code: #include <vecto ...

  8. BZOJ 1834: [ZJOI2010]network 网络扩容(网络流+费用流)

    一看就知道是模板题= = ,不说什么了= = PS:回去搞期末了,暑假再来刷题了 CODE: #include<cstdio> #include<iostream> #incl ...

  9. 【BZOJ】1834: [ZJOI2010]network 网络扩容(最大流+费用流)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1834 我又思考人生了T_T,nd的数组开小了,一直wa,调了一个小时才发现啊!!!!!我一直以为我的 ...

  10. 【BZOJ】1834 [ZJOI2010]network 网络扩容

    [算法]网络流-最大流+最小费用最大流(费用流) [题解] 第一问跑最大流. 第二问: 原始边相当于费用为0的边,再原图(跑过最大流的图)基础上添加带费用的边,容量为k(相当于inf). 第一问最大流 ...

随机推荐

  1. [改善Java代码]适当设置阻塞队列长度

    阻塞队列BlockingQueue扩展了Queue,Collection接口,对元素的插入和提取使用了"阻塞"处理,我们知道Collection下的实现类一般都采用了长度自行管理方 ...

  2. 关于Windows下mysql忘记root密码的解决方法

    原文链接: http://www.cnblogs.com/andy_tigger/archive/2012/04/12/2443652.html 1. 首先检查mysql服务是否启动,若已启动则先将其 ...

  3. (转)工作之路---记录LZ如何在两年半的时间内升为PM

    原文地址:http://www.cnblogs.com/zuoxiaolong/p/life31.html 引言 之前的伪PM纠结之路已经渐渐结束,LZ也终于正式爬上了PM的位置,对于LZ来说,这个时 ...

  4. Swift 性能探索和优化分析

    本文首发在 CSDN<程序员>杂志,订阅地址 http://dingyue.programmer.com.cn/. Apple 在推出 Swift 时就将其冠以先进,安全和高效的新一代编程 ...

  5. WebStorm 8.0安装LESS编译环境的教程

    WebStorm是一个非常棒的Web前端开发编辑器,被程序猿们成为“最智能的JavaScript IDE”.对HTML5.Bootstrap框架.Node.js等都有完美支持.目前最新版本为WebSt ...

  6. 数据库SQL优化大总结之百万级数据库优化方案

    网上关于SQL优化的教程很多,但是比较杂乱.近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充. 这篇文章我花费了大量的时间查找资料.修改.排版,希望大家阅读之后,感觉 ...

  7. hiho拓扑排序专题 ——第四十八、四十七周

    拓扑排序·一 分析: 此题就是求一个有向图中是否存在环. 如存在环则输出"Wrong", 若不存在环, 说明课程安排的合理,输出"Correct". 题中的提示 ...

  8. C#程序员整理的Unity 3D笔记(十三):Unity 3D基于组件的思想

    如果你接触过<设计模式>.软件架构的编程思想,就会知道优秀的设计准则:“组合优于继承的”. 这句话很简短,但开始学习OOP的时候,真切的是—-不太好理解(以我个人当初学习为例). OOP的 ...

  9. 第五十九篇、OC录制小视频

    用 AVCaptureSession + AVCaptureMovieFileOutput 来录制视频,并通过AVAssetExportSeeion 手段来压缩视频并转换为 MP4 格 AVFound ...

  10. 第四十一篇、Masonry利用Block实现链式编程

    一直都觉得使用Masonry的时候语法特别优雅,很早的时候就想尝试下怎么实现, 一直都没弄明白,直到最近看见一篇叫block实现链式编程的 1.方法的返回类型是代码块 >代码块的返回类型是该类的 ...