Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.

Solution. By Exercise I.2.2, $A=B^*B$ for some $B$. Let $$\bex B=(x_1,\cdots,x_k). \eex$$ Then $$\bex A=\sex{\sef{x_i,x_j}}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10

    (1). The numerical radius defines a norm on $\scrL(\scrH)$. (2). $w(UAU^*)=w(A)$ for all $U\in \U(n) ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

随机推荐

  1. 由于本公司项目需要,现急需拥有微软MCSE证书的人才,一经录用,待遇从优!

    志鸿科技于1988年在香港创办,从事资讯科技服务,为本地及跨国金融企业提供各种合适的企业应用软件及方案,并于2000年6月30日在香港联合交易所创业板成功上市 (股票代号8048),香港长江实业.新加 ...

  2. ExtJs4.2 知识点

    知识点1:修改密码类 参考:点击这里 Ext.apply(Ext.form.VTypes, { password: function (val, field) { if (field.initialP ...

  3. Java 类加载机制 ClassLoader Class.forName 内存管理 垃圾回收GC

    [转载] :http://my.oschina.net/rouchongzi/blog/171046 Java之类加载机制 类加载是Java程序运行的第一步,研究类的加载有助于了解JVM执行过程,并指 ...

  4. Linux下使用GDB调试程序

    问题描述:          Linux下使用GDB调试程序 问题解决:          (1)生成调试文件 注:         使用命令   gdb IOStream.c   -o IOStre ...

  5. uva 437 hdu 1069

    dp  将石块按三个面存入队列  按底面积排序  dp就最大高度  按嵌套矩形最长路做做法 #include <iostream> #include <cstdio> #inc ...

  6. firefly服务器间通信演示

    源地址:http://www.9miao.com/question-15-54560.html 最近好多童鞋都在问firefly几个服务器之间是如何通信的,其实在之前的distributed使用文档中 ...

  7. 如何让WIN32应用程序支持MFC类库

    参考链接:http://wenku.baidu.com/view/68fc340c79563c1ec5da714b.html

  8. java String.split方法是用注意点(转)

    转自:http://www.blogjava.net/fanyingjie/archive/2010/08/05/328059.html 在java.lang包中有String.split()方法,返 ...

  9. gdb调试多线程程序总结

    阿里核心系统团队博客 http://csrd.aliapp.com/?tag=pstack Linux下多线程查看工具(pstree.ps.pstack) http://www.cnblogs.com ...

  10. yii执行原理

    应用执行流程: 浏览器向服务器发送 Http Request | 控制器(protected/controllers) | |---> Action | 创建模型 (Model) | 检查$_P ...