Calculating a bearing between points in location-aware apps
https://software.intel.com/en-us/blogs/2012/11/30/calculating-a-bearing-between-points-in-location-aware-apps
Submitted by John Mechalas (... on Fri, 11/30/2012 - 08:37
Earlier this week I wrote about how to calculate the distance between two points in a location-aware app. Today, I am going to discuss a related topic: how to calculate the bearing between two points.
Like the shortest-distance problem, the bearing between two points on the globe is calculated using the great circle arc that connects them. With the exception of lines of latitude and longitude, great circle arcs do not follow a constant direction relative to true north and this means that as you travel along the arc your heading will vary.
This is made clear in the figure below, which is a gnomonic projection of the earth, showing our route from Portland to London (the gnomonic projection has a very special property: straight lines on the map correspond to great circle arcs). As you can see, the direction of travel changes along the path. The initial bearing, or forward azimuth, is about 33.6° but the final bearing as we approach London is about 141.5°.
As you travel along a great circle route your bearing to your destination changes. The dotted lines represent the direction of true north relative to the starting and ending points.
To calculate the initial bearing bearing we use the following formula. Note the use of the two-argument form of the arctangent, atan2(y,x), which ensures that the resulting angle is in the correct quadrant:
Θ = atan2( sin(Δλ) * cos(Φ2), cos(Φ1) * sin (Φ2) * cos(Δλ) )
This function will return the angle in radians from -π to π but what we want is an angle in degrees from 0 to 360. To accomplish this, we convert to degrees, add 360, and take the modulo 360:
Θd = ( Θ * 180 / π + 360 ) % 360
To get the final bearing, you reverse the latitudes and longitudes, and then take the angle that is in the opposite direction (180 degrees around).
Unlike our great circle distance calculation, the bearing calculation makes use of atan and it contains a singularity: when the two points converge, the angle becomes undefined. This makes perfect sense in the physical world, as if the source and the destination are exactly the same then there is no bearing between them. In practice, rounding errors would probably prevent a perfect equality from occurring, but it would still be good form to assume the points are coincident if their distance is below a threshold distance of a meter or two.
Code
Below are some code snippets that can be used to calculate the bearing between two points. You pass the latitude and longitude (in decimal degrees) for the first point as lat1 and long1, and for the second point in lat2 and long2.
For Windows developers, here is an implementation in C#:
class GreatCircleBearing
{
static Double degToRad = Math.PI / 180.0; static public Double initial (Double lat1, Double long1, Double lat2, Double long2)
{
return (_bearing(lat1, long1, lat2, long2) + 360.0) % ;
} static public Double final(Double lat1, Double long1, Double lat2, Double long2)
{
return (_bearing(lat2, long2, lat1, long1) + 180.0) % ;
} static private Double _bearing(Double lat1, Double long1, Double lat2, Double long2)
{
Double phi1 = lat1 * degToRad;
Double phi2 = lat2 * degToRad;
Double lam1 = long1 * degToRad;
Double lam2 = long2 * degToRad; return Math.Atan2(Math.Sin(lam2-lam1)*Math.Cos(phi2),
Math.Cos(phi1)*Math.Sin(phi2) - Math.Sin(phi1)*Math.Cos(phi2)*Math.Cos(lam2-lam1)
) * /Math.PI;
}
}
And in Javascript:
function bearingInitial (lat1, long1, lat2, long2)
{
return (bearingDegrees(lat1, long1, lat2, long2) + 360) % 360;
} function bearingFinal(lat1, long1, lat2, long2) {
return (bearingDegrees(lat2, long2, lat1, long1) + 180) % 360;
} function bearingDegrees (lat1, long1, lat2, long2)
{
var degToRad= Math.PI/180.0; var phi1= lat1 * degToRad;
var phi2= lat2 * degToRad;
var lam1= long1 * degToRad;
var lam2= long2 * degToRad; return Math.atan2(Math.sin(lam2-lam1) * Math.cos(phi2),
Math.cos(phi1)*Math.sin(phi2) - Math.sin(phi1)*Math.cos(phi2)*Math.cos(lam2-lam1)
) * 180/Math.PI;
}
And for Android developers, an implementation in Java:
class GreatCircleBearing
{
static public double initial (double lat1, double long1, double lat2, double long2)
{
return (_bearing(lat1, long1, lat2, long2) + 360.0) % 360;
} static public double final(double lat1, double long1, double lat2, double long2)
{
return (_bearing(lat2, long2, lat1, long1) + 180.0) % 360;
} static private double _bearing(double lat1, double long1, double lat2, double long2)
{
static double degToRad = Math.PI / 180.0;
double phi1 = lat1 * degToRad;
double phi2 = lat2 * degToRad;
double lam1 = long1 * degToRad;
double lam2 = long2 * degToRad; return Math.atan2(Math.sin(lam2-lam1)*Math.cos(phi2),
Math.cos(phi1)*Math.sin(phi2) - Math.sin(phi1)*Math.cos(phi2)*Math.cos(lam2-lam1)
) * 180/Math.PI;
}
}
As with our distance calculations, the assumption behind these formulas is a spherical earth. This is sufficiently accurate for casual use but scientific applications will need a more sophisticated model.
Calculating a bearing between points in location-aware apps的更多相关文章
- How To Start Building Spatially Aware Apps With Google’s Project Tango
How To Start Building Spatially Aware Apps With Google’s Project Tango “Tango can enable a whole new ...
- (转) [it-ebooks]电子书列表
[it-ebooks]电子书列表 [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...
- spring boot上传文件错误The temporary upload location [/tmp/tomcat.5260880110861696164.8090/work/Tomcat/localhost/ROOT] is not valid
参考了:https://www.jianshu.com/p/cfbbc0bb0b84 再次感谢,但还是有些调整 一.在zuul服务中加入两个配置参数(location: /data/apps/temp ...
- Netron开发快速上手(一):GraphControl,Shape,Connector和Connection
版权所有,引用请注明出处:<<http://www.cnblogs.com/dragon/p/5203663.html >> 本文所用示例下载FlowChart.zip 一个用 ...
- infoq - neo4j graph db
My name is Charles Humble and I am here at QCon New York 2014 with Ian Robinson. Ian, can you introd ...
- How parse REST service JSON response
1. get JSON responses and go to : http://json2csharp.com/ 2. write data contracts using C# All class ...
- Unsupervised Classification - Sprawl Classification Algorithm
Idea Points (data) in same cluster are near each others, or are connected by each others. So: For a ...
- PhoneGap API Documentation API Reference
API Reference-API参考 Accelerometer-加速度计 Tap into the device's motion sensor.-点击进入该设备的运动传感器. Camera-相机 ...
- Upgrade Guide
Upgrade Guide This guide will point out the key points to be aware of when upgrading to version 3. A ...
随机推荐
- NET Remoting 示例
.NET Remoting是.NET平台上允许存在于不同应用程序域中的对象相互知晓对方并进行通讯的基础设施.调用对象被称为客户端,而被调用对象则被称为服务器或者服务器对象.简而言之,它就是.NET平台 ...
- KMP算法的C++实现
这个问题阮一峰老师讲的很清楚,链接 这里我只贴一下我的C++实现代码: #include <iostream> #include <cstring> #include < ...
- Android XML使用的学习记录
1. 注释其中一段代码或是一行,可以采用<!-- -->,示例如下 <!-- <EditText android:layout_width=&quo ...
- 学习Hadoop不错的系列文章
1)Hadoop学习总结 (1)HDFS简介 (2)HDFS读写过程解析 (3)Map-Reduce入门 (4)Map-Reduce的过程解析 (5)Hadoop的运行痕迹 (6)Apache Had ...
- 3D开发--CopperCube
CopperCube的常用接口,以及如何用javascript语言控制场景中的人物动作,或者获取任务的位置等信息
- bzoj2251
以前看到这道题想到的是SA,做起来不是很美观 学了SAM之后,这题简直是随便搞 ..,'] of longint; s,sa,mx,w,fa:..] of longint; i,n,last,t:lo ...
- shiro实现APP、web统一登录认证和权限管理
先说下背景,项目包含一个管理系统(web)和门户网站(web),还有一个手机APP(包括Android和IOS),三个系统共用一个后端,在后端使用shiro进行登录认证和权限控制.好的,那么问题来了w ...
- LeetCode Letter Combinations of a Phone Number 电话号码组合
题意:给一个电话号码,要求返回所有在手机上按键的组合,组合必须由键盘上号码的下方的字母组成. 思路:尼玛,一直RE,题意都不说0和1怎么办.DP解决. class Solution { public: ...
- Java [Leetcode 189]Rotate Array
题目描述: Rotate an array of n elements to the right by k steps. For example, with n = 7 and k = 3, the ...
- ecshop init.php文件分析
1. ecshop init.php文件分析 2. <?php 3. 4. /** 5. * ECSHOP 前台公用文件 6. * ===================== ...