前言  

  之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k;但是问题在于如何求出这个最大前后缀长度呢?我觉得网上很多帖子都说的不是很清楚,总感觉没有把那层纸戳破,后来翻看算法导论,32章 字符串匹配虽然讲到了对前后缀计算的正确性,但是大量的推理证明不大好理解,没有与程序结合起来讲。今天我在这里讲一讲我的一些理解,希望大家多多指教,如果有不清楚的或错误的请给我留言。 

1.kmp算法的原理:

  本部分内容转自:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

  

字符串匹配是计算机的基本任务之一。

举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

1.

首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.

因为B与A不匹配,搜索词再往后移。

3.

就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.

接着比较字符串和搜索词的下一个字符,还是相同。

5.

直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.

这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.

一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.

怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

9.

已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

因为 6 - 2 等于4,所以将搜索词向后移动4位。

10.

因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.

因为空格与A不匹配,继续后移一位。

12.

逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.

逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

14.

下面介绍《部分匹配表》是如何产生的。

首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

15.

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

16.

"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

2.next数组的求解思路

  通过上文完全可以对kmp算法的原理有个清晰的了解,那么下一步就是编程实现了,其中最重要的就是如何根据待匹配的模版字符串求出对应每一位的最大相同前后缀的长度。我先给出我的代码:

 1 void makeNext(const char P[],int next[])
2 {
3 int q,k;//q:模版字符串下标;k:最大前后缀长度
4 int m = strlen(P);//模版字符串长度
5 next[0] = 0;//模版字符串的第一个字符的最大前后缀长度为0
6 for (q = 1,k = 0; q < m; ++q)//for循环,从第二个字符开始,依次计算每一个字符对应的next值
7 {
8 while(k > 0 && P[q] != P[k])//递归的求出P[0]···P[q]的最大的相同的前后缀长度k
9 k = next[k-1]; //不理解没关系看下面的分析,这个while循环是整段代码的精髓所在,确实不好理解
10 if (P[q] == P[k])//如果相等,那么最大相同前后缀长度加1
11 {
12 k++;
13 }
14 next[q] = k;
15 }
16 } 

  现在我着重讲解一下while循环所做的工作:

  1.   已知前一步计算时最大相同的前后缀长度为k(k>0),即P[0]···P[k-1];
  2.   此时比较第k项P[k]与P[q],如图1所示
  3.   如果P[K]等于P[q],那么很简单跳出while循环;
  4.   关键!关键有木有!关键如果不等呢???那么我们应该利用已经得到的next[0]···next[k-1]来求P[0]···P[k-1]这个子串中最大相同前后缀,可能有同学要问了——为什么要求P[0]···P[k-1]的最大相同前后缀呢???是啊!为什么呢? 原因在于P[k]已经和P[q]失配了,而且P[q-k] ··· P[q-1]又与P[0] ···P[k-1]相同,看来P[0]···P[k-1]这么长的子串是用不了了,那么我要找个同样也是P[0]打头、P[k-1]结尾的子串即P[0]···P[j-1](j==next[k-1]),看看它的下一项P[j]是否能和P[q]匹配。如图2所示

附代码:

 1 #include<stdio.h>
2 #include<string.h>
3 void makeNext(const char P[],int next[])
4 {
5 int q,k;
6 int m = strlen(P);
7 next[0] = 0;
8 for (q = 1,k = 0; q < m; ++q)
9 {
10 while(k > 0 && P[q] != P[k])
11 k = next[k-1];
12 if (P[q] == P[k])
13 {
14 k++;
15 }
16 next[q] = k;
17 }
18 }
19
20 int kmp(const char T[],const char P[],int next[])
21 {
22 int n,m;
23 int i,q;
24 n = strlen(T);
25 m = strlen(P);
26 makeNext(P,next);
27 for (i = 0,q = 0; i < n; ++i)
28 {
29 while(q > 0 && P[q] != T[i])
30 q = next[q-1];
31 if (P[q] == T[i])
32 {
33 q++;
34 }
35 if (q == m)
36 {
37 printf("Pattern occurs with shift:%d\n",(i-m+1));
38 }
39 }
40 }
41
42 int main()
43 {
44 int i;
45 int next[20]={0};
46 char T[] = "ababxbababcadfdsss";
47 char P[] = "abcdabd";
48 printf("%s\n",T);
49 printf("%s\n",P );
50 // makeNext(P,next);
51 kmp(T,P,next);
52 for (i = 0; i < strlen(P); ++i)
53 {
54 printf("%d ",next[i]);
55 }
56 printf("\n");
57
58 return 0;
59 }

3.kmp的优化

待续。。。。

经典算法系列--kmp的更多相关文章

  1. 三白话经典算法系列 Shell排序实现

    山是包插入的精髓排序排序,这种方法,也被称为窄增量排序.因为DL.Shell至1959提出命名. 该方法的基本思想是:先将整个待排元素序列切割成若干个子序列(由相隔某个"增量"的元 ...

  2. (转)白话经典算法系列之八 MoreWindows白话经典算法之七大排序总结篇

    在我的博客对冒泡排序,直接插入排序,直接选择排序,希尔排序,归并排序,快速排序和堆排序这七种常用的排序方法进行了详细的讲解,并做成了电子书以供大家下载.下载地址为:http://download.cs ...

  3. 【经典算法】——KMP,深入讲解next数组的求解

    我们在一个母字符串中查找一个子字符串有很多方法.KMP是一种最常见的改进算法,它可以在匹配过程中失配的情况下,有效地多往后面跳几个字符,加快匹配速度. 当然我们可以看到这个算法针对的是子串有对称属性, ...

  4. 【转】【经典算法】——KMP,深入讲解next数组的求解

    前言 之前对kmp算法虽然了解它的原理,即求出P0···Pi的最大相同前后缀长度k:但是问题在于如何求出这个最大前后缀长度呢?我觉得网上很多帖子都说的不是很清楚,总感觉没有把那层纸戳破,后来翻看算法导 ...

  5. 【从零学习经典算法系列】分治策略实例——高速排序(QuickSort)

    在前面的博文(http://blog.csdn.net/jasonding1354/article/details/37736555)中介绍了作为分治策略的经典实例,即归并排序.并给出了递归形式和循环 ...

  6. 六白话经典算法系列 高速分拣 高速GET

     高速分拣,因为相同的排序效率O(N*logN)几个订购流程更高效,因此,经常使用,再加上高速分拣思想----分而治之的方法也是非常有用的,如此多的软件公司书面采访.它包含了腾讯,微软等知名IT企业宁 ...

  7. July-程序员面试、算法研究、编程艺术、红黑树、数据挖掘5大经典原创系列集锦与总结

    程序员面试.算法研究.编程艺术.红黑树.数据挖掘5大经典原创系列集锦与总结 http://blog.csdn.net/v_july_v/article/details/6543438

  8. 经典算法题每日演练——第七题 KMP算法

    原文:经典算法题每日演练--第七题 KMP算法 在大学的时候,应该在数据结构里面都看过kmp算法吧,不知道有多少老师对该算法是一笔带过的,至少我们以前是的, 确实kmp算法还是有点饶人的,如果说红黑树 ...

  9. 经典算法研究系列:二、Dijkstra 算法初探

    July   二零一一年一月 本文主要参考:算法导论 第二版.维基百科. 一.Dijkstra 算法的介绍 Dijkstra 算法,又叫迪科斯彻算法(Dijkstra),算法解决的是有向图中单个源点到 ...

随机推荐

  1. map的实现

    1.map的实现是使用平衡树,AVL树或者红黑树. 2.在无序的情况下,查找为常数时间.有序的时候,查找为对数时间.二叉排序树(BST)就是为了解决这个问题. 3.但是,极端情况下,BST的查找效率退 ...

  2. Visual Studio 2012 使用SvcUtil在MVC4客户端引用WCF服务

    已创建服务. 若要测试此服务,需要创建一个客户端,并将其用于调用该服务.可以使用下列语法,从命令行中使用 svcutil.exe 工具来进行此操作: svcutil.exe http://localh ...

  3. javascript实现继承的方式

    this this表示当前对象,如果在全局作用范围内使用this,则指代当前页面对象window: 如果在函数中使用this,则this指代什么是根据运行时此函数在什么对象上被调用. 我们还可以使用a ...

  4. 10分钟学会基于ASP.NET的 JQuery实例 (转)

    本文介绍如何在ASP.NET(ASP.NET/AJAX)里使用基于JQuery的AJAX技术.(源代码下载见最后) 在使用JQuery前,请到www.jquery.com下载最新版本的js代码,然后再 ...

  5. C# DataGridView中合并单元格

    /// 合并GridView列中相同的行 /// /// GridView对象 /// 需要合并的列 public static void GroupRows(GridView GridView1, ...

  6. NAVICATE 修改存储过程提示PROCEDURE _Navicat_Temp_Stored_Proc already exists 解决方法

    推测是navicate修改存储过程会自动名为_Navicat_Temp_Stored_Proc的存储过程 创建完毕后自动drop 由于某些原因或bug导致最终没有drop,于是修改存储过程失败. 所以 ...

  7. C#操作Excel(2)-- 打开-读取Excel文档

    由于要为某软件实现导出Excel功能,故有此文. 本文的开发环境是Visual Studio 2010 ,C#, Excel 2007. 新建C#工程后打开Solution Explorer,可以看到 ...

  8. [Unity3D]Unity3D游戏开发之使用EasyTouch虚拟摇杆控制人物移动

    大家好,欢迎大家关注我的博客,我是秦元培,我的博客地址是blog.csdn.net/qinyuanpei.今天呢,我们来一起学习在Unity3D中使用EasyTouch虚拟摇杆来控制人物移动.虽然Un ...

  9. RedHat Linux 安装oracle11g

    1.准备oracle安装文件Oracle11gR2包含两个文件linux_11gR2_database_1of2.zip和linux_11gR2_database_2of2.zip,将这两个文件通过S ...

  10. 3.2html学习笔记之图片

    <img src="" width="50%" alt="加载时候或无法显示时候显示的文字" height="让浏览器预先给 ...